A Weibull-count approach for handling under- and overdispersed longitudinal/clustered data structures

Martial LuytsGeert MolenberghsGeert VerbekeKoen MatthijsEduardo Ribeiro JrClarice DemétrioJohn Hinde

Interuniversity Institute for Biostatistics and statistical Bioinformatics (I-BioStat)

University of Leuven, Belgium

martial.luyts@kuleuven.be

www.ibiostat.be

Interuniversity Institute for Biostatistics and statistical Bioinformatics

ENAR, March 26, 2018

1. Clinical trial in epileptic patients

- A randomized, double-blind, parallel group multi-center study
- Aim: Compare placebo with a new Anti-Epileptic Drug (AED) and one or two other AEDs
- Randomization after 12-weeks stabilization period (45 patients to placebo, 44 to the new treatment)
- Number of epileptic seizures, i.e., a count outcome, measured for up to 27 weeks of follow-up
- **Research interest** is whether or not the additional new treatment reduces the number of seizures

2. The Weibull-count approach

- First introduced by Nakagawa and Osaki (1975)
- Recently examined for dispersion by Klakattawi et al. (2018)
- The Weibull-count (DW) approach:
 - Let Y_i , $i = 1, \ldots, n$, be DW distributed
 - Probability mass function:

$$P(Y_i = y_i) = q^{y_i^{\rho}} - q^{(y_i + 1)^{\rho}}$$

0 < q < 1, \(\rho > 0\)

Special cases:

- $\rho = 1$ & $q = 1 p \Rightarrow$ Geometric distribution;
- $\rho = 2$ & $q = \theta \Rightarrow$ Discrete Rayleigh (DR) distribution (Roy, 2004);
- $\rho \to +\infty \Rightarrow$ DW approaches a Bernoulli distribution with probability q.

Mean & variance expression:

$$\mathsf{E}(Y_i) = \mu_{ij} = \sum_{n=1}^{+\infty} \mathrm{e}^{-\lambda_{ij} \cdot n^{\rho}},$$

$$\operatorname{Var}(Y_i) = 2 \cdot \sum_{n=1}^{+\infty} n \cdot \mathrm{e}^{-\lambda_{ij} \cdot n^{\rho}} - \mu_{ij} - \mu_{ij}^2$$

Nice property:

Its π -th ($0 < \pi < 1$) quantile has a closed-form expression, given by

$$\mathsf{Q}_{\pi} = \left\lceil \left(\frac{\log(1-\pi)}{\log(q)} \right)^{1/\rho} - 1 \right\rceil.$$

• Median expression:

$$\log(\mathsf{Q}_{1/2} + 1) \ = \ \frac{1}{\rho} \cdot \left\{ \log[\log(2)] - \log[-\log(q)] \right\}.$$

 \Rightarrow Regression context:

$$\log[-\log(q_i)] = \mathbf{x}'_i \cdot \boldsymbol{\beta}.$$

2.1. Characteristics

$$\mathsf{DI} = \frac{\mathsf{Var}(Y_i)}{\mathsf{E}(Y_i)}, \qquad \mathsf{ZI} = 1 + \frac{\mathsf{log}P(Y_i=0)}{\mathsf{E}(Y_i)}, \qquad \mathsf{HT} = \frac{P(Y_i=y_i+1)}{P(Y_i=y_i)}, \text{ for } y_i \to \infty.$$

2.2. Adjust for longitudinal/hierarchical structures

- [Epilepsy dataset] Number of epilepsy attacks are recorded over time
 ⇒ Longitudinal structure is present!
- Notation of Y_i now extends to Y_{ij} , which presents the *j*-th outcome $(j = 1, ..., n_i)$ in cluster/subject $i \ (i = 1, ..., N)$
- A mixed effects approach:

$$\begin{split} \log[-\log(q_{ij})] \; = \; \boldsymbol{x}'_{ij} \cdot \boldsymbol{\beta} + \boldsymbol{z}'_{ij} \cdot \boldsymbol{b}_{i}, \\ \boldsymbol{b}_{i} \; \sim \; N(\boldsymbol{0}, D) \end{split}$$

3. Analyzing the Epilepsy dataset

- Let Y_{ij} be the number of epileptic seizures that patient i experiences during week j of the follow-up period
- Let t_{ij} be the time-point at which outcome Y_{ij} has been measured, i.e., $t_{ij} = 1, 2, \ldots$ until at most 27
- The <u>hierarchical DW model</u> is considered here, with

$$\begin{split} \log[-\log(q_{ij})] \ = \ \begin{cases} (\beta_0 + b_i) + \beta_1 \cdot t_{ij}, & \text{if placebox}\\ (\beta_2 + b_i) + \beta_3 \cdot t_{ij}, & \text{if treated} \end{cases} \\ b_i \ \sim \ N(0, \sigma^2) \end{split}$$

• Results of the **univariate cases**:

		<u>P</u>	DP	DW
Effect	Par.	Est. (s.e.)	Est. (s.e.)	Est. (s.e.)
Intercept placebo	eta_0	1.2662(0.0424)	$1.2662 \ (0.1054)$	$0.7341 \ (0.1002)$
Slope placebo	β_1	-0.0134(0.0043)	-0.0134 (0.0108)	-0.0174(0.0095)
Intercept treatment	β_2	$1.4531 \ (0.0383)$	$1.4531 \ (0.0953)$	0.8278(0.0992)
Slope treatment	eta_3	-0.0328(0.0038)	-0.0328(0.0095)	-0.0317 (0.0085)
Difference in slopes	$\beta_3 - \beta_1$	-0.0195(0.0058)	-0.0195(0.0144)	-0.0143 (0.0127)
Ratio of slopes	β_3/β_1	2.4576(0.8480)	2.4576(2.1094)	1.8189(1.1027)
	ϕ		0.1616(0.0061)	
	ρ			$0.7383 \ (0.0172)$
-2 loglik		11590.0	6815.6	6291.3
AIC		11598.0	6825.6	6301.3
BIC		11619.0	6851.9	6327.6

• Results of the **hierarchical cases**:

		<u>PN</u>	DPN	DWN
Effect	Par.	Est. (s.e.)	Est. (s.e.)	Est. (s.e.)
Intercept placebo	eta_0	0.8179(0.1677)	0.8314(0.1721)	1.4322(0.2182)
Slope placebo	β_1	-0.0143(0.0044)	$-0.0146 \ (0.0067)$	-0.0297 (0.0098)
Intercept treatment	β_2	$0.6475\ (0.1701)$	$0.6730\ (0.1753)$	$1.1352 \ (0.2194)$
Slope treatment	eta_3	-0.0120(0.0043)	-0.0129 (0.0065)	-0.0117(0.0093)
Difference in slopes	$\beta_3 - \beta_1$	$0.0023 \ (0.0062)$	$0.0018 \ (0.0093)$	$0.0180 \ (0.0135)$
Ratio of slopes	β_3/β_1	$0.8398\ (0.3979)$	$0.8777 \ (0.5979)$	$0.3947 \ (0.3382)$
Std. dev. random effect	σ	$1.0755 \ (0.0857)$	$1.0458 \ (0.0875)$	$1.2646 \ (0.1062)$
	ϕ		$0.4355\ (0.0169)$	
	ρ			1.3075(0.0340)
-2 loglik		6271.9	5652.2	5451.8
AIC		6281.9	5664.2	5463.8
BIC		6294.3	5679.1	5478.7

- Able to flexibly model highly overdispersed, zero-inflated, heavy-tailed and correlated data
- Capable of modeling some low overdispersed regions with zero-deflation (e.g., the DR approach) and even underdispersed data
- Interpretations of the parameters can directly be related to the median profile

