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Abstract
A random-effects extension of the Weibull-count model of Nakagawa and Osaki (1975) is proposed and applied

to the epilepsy dataset. A goodness-of-fit evaluation of the model is provided through a comparison of some-
well known hierachical count models, i.e., the Poisson-normal, and double Poisson-normal random effects models.
Empirical results show that the proposed extension flexibly fits the data, more specifically, for heavy-tailed, zero-
inflated, overdispersed and correlated count data.

Introduction
The epilepsy dataset comes from a randomized, double-blinded, parallel group multicenter study
aimed at comparing placebo with a new anti-epileptic drug (AED), in combination with one or two
other AEDs. Patients were followed for several weeks during which the number of epileptic seizures
experienced in the last week were counted. As result, highly variable longitudinal count data were
observed with the presence of extreme values, zero-inflation, and very few observations available at
some of the time-points, especially past week 20.

Figure 1: Epilepsy data (Faught et al., 1996). Subject specific profiles (grey) with corresponding average (solid black)
and median (dashed black) profiles of the number of epileptic attacks for every visit, categorized for both treatments.

Main Objective
•Whether or not the new treatment reduces the number of epileptic seizures.

Materials and Methods
A Weibull-model-based approach for discrete data, here referred as the discrete Weibull (DW) model,
first introduced by Nakagawa and Osaki (1975), is considered as underlying model framework. Ex-
tensions to hierarchical approaches with dispersion are proposed. In particular, a random-effects
extension is considered that takes into account the underlying correlation structure.

Mathematical Section
Let Yij be the jth discrete outcome measured for cluster (subject) i, i = 1, . . . , N , j = 1, . . . , ni, and
assume to follow a DW distribution (Nakagawa and Osaki, 1975) with parameters 0 < q < 1 and
ρ > 0. The probability mass, mean and variance function are respectively given by

P(Yij = yij) = qy
ρ
ij − q(yij+1)ρ, E(Yij) = µ =

∑+∞
n=1 q

nρ, Var(Yij) = 2 ·
∑+∞
n=1 n · q

nρ − µ− µ2,

Special cases:
• ρ = 1 and q = 1− p→ Geometric distribution
∗ q = e−λ→ Discrete exponential (DE) distribution (Sato et al., 1999)
• ρ = 2 and q = θ→ Discrete Rayleigh (DR) distribution (Roy, 2004)
• ρ→ +∞→ DW approaches a Bernoulli distribution with probability q

Characteristics:
To explore the characteristics of the DW model, we compute indexes for dispersion (DI), zero-
inflation (ZI) and heavy-tail (HT), which are respectively given by

DI = Var(Yij)
E(Yij)

, ZI = 1 +
logP (Yij=0)

E(Yij)
, HT =

P (Yi=yi+1)
P (Yi=yi)

, for yi→∞.

•Over-, under- and equidispersion for, respectively, DI > 1, DI < 1 and DI = 1

• Zero-inflation, zero-deflation and no excess of zeros for, respectively, ZI > 0, ZI < 0 and ZI = 0

•Heavy-tail distribution for HT→ 1 when y →∞

Figure 2: Characteristic indexes. Dashed, dot dashed and dotted lines represent the Poisson, DE and DR distribution,
respectively.

Regression framework:

ln[−ln(qij)] = x
′

ij · β + z
′

ij · bi ≡ ηij, bi ∼ N(0, D).

• Conditional on the random effects, the regression parameter vector β can directly be interpreted in
terms of the logarithm of the (closed-form) median.

• The random effects vector bi here follows a multivariate normal distribution with mean vector 0
and variance-covariance matrix D.

•Maximum likelihood principles with numerical integration can be used for estimation.

Analysis
The epilepsy data will be analyzed with the extended DW model, i.e., the discrete Weibull-normal
(DWN) model, and compared with the classical log-linear Poisson-normal (PN) and extended double
Poisson-normal (DPN) model of Efron (1986).

Let Yij be the number of epileptic seizures that patient i experiences during week j of the follow-up
period, and let tij be the time-point at which outcome Yij has been measured, i.e., tij = 1, 2, . . . ,
until at most 27. The following specific choice is made for the linear predictor:

ηij = β0 + bi + β
′

0 · Ti + (β1 + β
′

1 · Ti) · tij,

where Ti = 1 if patient i receives the treatment, and 0 for placebo. Here, β
′

0 and β
′

1 represent dif-
ferences between treatment and placebo in terms of intercept and slope, respectively. The random
intercept bi is assumed to be normally distributed with mean 0 and variance σ2, reflecting the between-
patient variability within the data.

PN DPN* DWN
Effect Par. Est. (s.e.) Est. (s.e.) Est. (s.e.)
Intercept placebo β0 0.8177 (0.1677) 0.8314 (0.1721) 1.4319 (0.2183)

Difference in intercepts β
′

0 −0.1705 (0.2387) −0.1582 (0.2451) −0.2970 (0.3005)
Slope placebo β1 −0.0143 (0.0044) −0.0146 (0.0067) −0.0297 (0.0098)
Difference in slopes β

′

1 0.0023 (0.0062) 0.0018 (0.0093) 0.0180 (0.0135)

Ratio of slopes 1 +
β
′
1
β1

0.8398 (0.3979) 0.8778 (0.5980) 0.3947 (0.3382)

Std. dev. random effect σ 1.0755 (0.0857) 1.0458 (0.0875) 1.2658 (0.1063)
φ −− 0.4355 (0.0169) −−
ρ −− −− 1.3074 (0.0340)

−2 loglik 6271.9 5652.2 5451.1
AIC 6281.9 5664.2 5463.1

* Over-, under- and equidispersion corresponds to φ < 1, φ > 1 and φ = 1, respectively.

Table 1: Epilepsy dataset. Parameter estimates and standard errors for the (1) Poisson-normal (PN) model, (2) double
Poisson-normal (DPN) model, and (3) the discrete Weibull-normal (DWN) model.

Conclusions
• For the epilepsy dataset, DWN is considerably better in terms of likelihood compared to the PN

and DPN models.

•DWN model allows inferences directly on the median scale, while a restricted mean scale interpre-
tation is obtained for the PN and DPN model.

•DWN is able to flexibly model highly overdispersed, zero-inflated, heavy-tailed and correlated
data, and even underdispersed data.
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