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Part 1:

Introductory material
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1.1 Demographic, historical data of
Moerzeke

e Moerzeke is a small village in the center of Flanders, within the province of East
Flanders

e |t is a geographical isolate

e Mainly populated by farmers
until well into the 20th century e

Sohejey,

BBBBBB

e More textile industry oriented
from the middle of the 19th cen- ~ \
tury onwards

e Fertility was traditionally high e
and dropped at the beginning of AR
the 20th century 2 =~ mm
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e The information in the database is drawn from church and civil registers

e [he database contains information of individuals who were born, married or died in
Moerzeke

e Focus is laid on the familial transmission of longevity, i.e., a time-to-event outcome

TAS
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e A sample of 474 families is taken:

COMPLETE FAMILIES

Age

Age

CENSORED FAMILIES

FamilyMember FamilyMember

e A total of 457 'complete’ families, based on specific criteria
e Recover additional observations = 17 'censored’ families

e Much between- and within-household variability
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e And even be categorized in the sex of the first child:

Sex=B Sex=0G Sex=B Sex=0G

[ F M c F M c F WM c F M

FamilyMember FamilyMember

Belgium, October 21, 2016



Part 2:

Methodology
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2.1 The classical Weibull- and exponential
model

e Let T be the longevity of mother, father and first-born child, independently of each
other (i =1,...,3)

e Outcome belongs to the family of non-Gaussian outcomes

e [he Generalized Linear Model:

e All T; have densities f(t;|0;, ¢) which belong to the exponential family:
F(til0;, @) = exp {¢™ [t:6; — (0)] + clti, 9)}

e natural parameter — 0, = x;/0 — linear predictor
e Scale parameter (dispersion parameter): ¢

e Inverse link function: ()
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e Mean-variance relationship: Var(T;) = ¢ [@D/—l(E(Ti))} = ¢v(E(T}))

e Special cases: Exponential- and Weibull model

Element notation time to event

Model Exponential Weibull

Model f(t;) e Pl ppt! e et

Nat. param 0, —

Mean function v (6;) — In(—0;)

Norm. constant c¢(t;, ¢) 0

Dispersion ) 1

Mean E(T)) ! P (p 1)
Variance Var(T;) 02 P P T R2p t+1) —T(pt+ 1)
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2.2 Adjust for extra dispersion

e Mean-variance relationship available

e Different approaches to account for extra dispersion
e Approach 1: ¢ # 1 = Var(T;) = ¢ - E(T})*
e Approach 2: Two-stage approach

fti ] 0:;) = expf{o™" - [t: - h(0;) — g(0;)] + c(ti, 9)},
f(0;) = exp{vy-[¥-h(0:) — g(0:)] + c*(ti, )},
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e Special cases: Exponential-gamma and Weibull-gamma model

Element notation time to event
Model Exponential-gamma Weibull-gamma
Hier. model  f(#;]6;) 0;e~ it o0 pt! e o0t
RE model f(9;) Q?B_:F(Zi)/ﬁ 0?5_:5(23/6
Marg. model  f(¢;) % %
h(6;) ) g,
9(0;) —1In(6;)/¢ —In(6;)/¢
¢ 1/ 1/¢
v pla—1) pla—1)
W [Bo(a = 1) [Bo(a = 1)
c(ti, ¢) In(p) In (pptf ™)
C(r4) () —Wl (7)) — Il (1)
Mean E(Y) p(a— 1)8]) ! ey
Variance Var(Y)  afp*(a —1)*(a —2)3?] 1 m 2T (a — 2p"HT(2p7Y)
_F(a—p;;zzg(p‘l)ﬂ
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2.3 Adjust for hierarchical structures

e Family members are allocated within a household
— Hierarchical structure is present!

e Notation of 7; now extends to 7;;, which presents the longevity of mother, father and
first child (7 = 1,2,3) in household i (i = 1,...,474)

e [ he Generalized Linear Mixed Model:
fitijlbi, B, 0) = exp{o '[ti;0:; — V(0:)] + c(ti, @)}

n(pi) = nlE(T;]bs)] = w;j/@+z;jbi

b; ~ N(0,D)
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e Special case: The Weibull-normal model

/ /

/ / Xﬂ—FZb

—1 . ..b: “\tPe g 1y 0
)\ptzpj . i B+2;;b; . e ij €

)

3
]:

1

o 1 —l-b/--D_l-bZ-
f(bz) — (2 ] 7T)Q/2' | D |1/2 ‘e e )
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2.4 The combined model

e Until now, both complexities were treated separately

e |s there a way to combine both strategies simultaneously? YES!!!

e The Combined Model:
filtijlbs, B) = exp{o™ [tihij — b(Nij)] + c(tiy, )}
E(Ti10:5,bi) = pi; = 0ijk;
kij = g€ + 2i;bi)
0ij ~ Gij(Bij, 07))
b; ~ N(0,D)

nij = x;;€ + 2;b;
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e Special case: Weibull-gamma-normal model

/ /

3 / / P
—1 . ..b. “\17..0: .. 1]
f(t; | 0;,b;) 1)\ p- 0 tfj L oXij Brzipbi | =Mty bije |

J

5 1 a;—1 -y
f( > jzl BJJ . F(Oé]> )

o 1 —l-b/uD_l-bi
f(b;) = (2-7T)Q/2-|D|1/2.6 2 .

e Such complex models can have some drawbacks:

e Attendance of analytically closed-form expressions? If not, approximation
methods need to be used (e.g., Taylor-series expansion based methods; Laplace
approximations; numeric integration)

e Weibull-gamma-normal model =- Analytical closed-form expressions exist!!
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e Marginal density:

m;+1
3 (_1)772] F<04] + m; -+ 1)6] it 1 (miF1)p—1
( ) (m1,...,m3) J=1 mj! F(()éj) J
1
e Marginal moments:
ko Osz< -_k/p,k/p—l—w k / L2
E(Tzﬂ = )\k/pﬁk/p exp —pmi]ﬁ i pgszz
~ aiBlaj—1/p,1/p+1) 1 |
E(T;) = Al/pﬁl/p b pw”,@—i— 22 tzzJ
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Var(T;) =

Cov(T3;, Tix)

Oéj 2 / 1
N2/p 320 CXp (_pwijﬂ T3 pz ZJDZZJ)

X

021875

1 / / ]
A2/p5;/p61/p p<wz’j6 + wzkzﬁ)

I 1 11
X B Oéj—pp+1 B ak_p7p+1

1
Q(Z;]DZZ] + Z;kDZik)

X exp
2p

1
exp( z Dzzk) — 1]
0?

1
B(a;—2/p,2/p+1)exp (,OQZ;jDZU) — o, B (ozj —
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Part 3:

Analyzing the Moerzeke data
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3.1 Findings with the multivariate
Plackett Dale model

Main conclusions:

e The estimated association parameter between mother and child is 1.349 (95%
Cl = [1.002;1.696]), indicating a positive association between them;

e However, for father-child, the value seems to be lower (0.983; not statistically
significant).
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3.2 Extra findings with the combined
modeling framework

e The proposed exponential-gamma-normal model is formulate as

3 A
fTi(ti | 92-7 bZ.) — 'H1 QZ.]. ) eAij . e—tijﬂz’j-e J7
]:
Ay =& +&-Si+& Yy +&. - Fij+&. - My + b,
3 1
0,) = L9l oty
f( > ]1;[1 Oé_& . F(OZ) ZJ e Y
1 —

o) = (2-7-d)i2’
where

e S; = 0 if the sex of the first child in household 7 is female and 1 if it is male;
e [;; = 1 if person j in household ¢ is the father and O if it is not the father;

e M;; = 1 if person j in household 7 is the mother and 0 if it is not the mother;
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e The year of birth Y;;, which is subject-specific

e Results of fitting several exponential models:

E— EG- E-N EGN
Effect Par. Estimate (s.e.) Estimate (s.e.) Estimate (s.e.) Estimate (s.e.)
Intercept € —0.7357 (2.0636)  —0.7354 (2.0657)  —0.7357 (2.0636)  —0.7355 (2.0659)
Sex of first child £ —0.0454 (0.0541)  —0.0454 (0.0542)  —0.0454 (0.0541)  —0.0454 (0.0542)
Year of Birth o —0.5471 (1.1200)  —0.5471 (1.1302) —0.5471 (0.9600)  —0.5471 (1.1303)
Indicator of Father Eno —0.1524 (0.0463)  —0.1526 (0.0765)  —0.1524 (0.0764)  —0.1526 (0.0765)
Indicator of Mother & —0.1134 (0.0744)  —0.1135 (0.0745) —0.1134 (0.0744) —0.1135 (0.0745)
Std. dev. random effect /d —— —— —6.06E —8 (0.0284) 5.471E — 7 (0.0284)
Gamma parameter o —— 545.01 (359.54) —— 500.01 (315.96)
-2 log-likelihood T7777.0 7779.3 T7777.0 7779.6

= |Possible indication of negative variance components!
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e Digging a little deeper:

Mean variance of langevity

50

45

40

35

30

Occurency of underdispersion in the Moerzeke data

Sex_of first_child = Boy

Sex_of first_child = Girl

100 200 300 400 0
Househald
--------- Observed Variance

100 200 300 400

Weibull Variance

¢ Indication that underdispersion is present

e Note: Normal random effects induce both correlation and

over-underdispersion
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Part 4:

Negative variance components

Belgium, October 21, 2016

22



4.1 Linear mixed model

e Start simple with the random intercept approach

e Conditional model:

Yi|b; ~ N(X;- B+ bi,0%),
b ~ N(0,d*).

e Constraint: ¢ and d” require to be POSI-
TIVE!

e Marginal model:

Y, ~N(X;-8,d*-J+c*-1I).

e Constraint: d*>-J +0%-1 require to
be POSITIVE DEFINITE! (satisfied if
p=d/(d®+0°) > —(n; —1)7)

= NEGATIVE VALUES for d° are perfectly acceptable!
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e In the marginal model, d° is interpreted as a VARIANCE COMPONENT
(NOT as a variance!);

e Negative values for d? are perfectly possible in practice, e.g., in a
COMPETITIVE SETTING:

e The asymptotic null distribution is well known to be \? for the marginal model,
while this is %X% + %X(Q) for the conditional model
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4.2 Generalized linear mixed &
combined models

e Investigating hierarchical and marginal views for negative variance
components and/or underdispersion become more complex in these
frameworks

e Classical software procedures like NLMIXED encompasses numerical optimization
algorithms, which often follows a hierarchical viewpoint

e Limitation: No allowance for negative estimates of the variance components
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