## Negative Variance Components in an Underdispersed, Repeated Time-to-Event setting

(Leuven Statistics Days 2016-2017)

Martial Luyts Geert Molenberghs Geert Verbeke

Interuniversity Institute for Biostatistics and statistical Bioinformatics (I-BioStat)

Katholieke Universiteit Leuven, Belgium

martial.luyts@kuleuven.be

www.ibiostat.be



Interuniversity Institute for Biostatistics and statistical Bioinformatics

## Contents

| 1. Introductory material                          | -   |
|---------------------------------------------------|-----|
| 1.1. Demographic, historical data of Moerzeke     |     |
| 2. Methodology                                    |     |
| 2.1. The classical Weibull- and exponential model | •   |
| 2.2. Adjust for extra dispersion                  |     |
| 2.3. Adjust for hierarchical structures           |     |
| 2.4 The combined model                            |     |
| 3. Analyzing the Moerzeke data                    | - 1 |

| 3.1. Findings with the multivariate Plackett Dale model  | 18 |
|----------------------------------------------------------|----|
| 3.2. Extra findings with the combined modeling framework | 19 |
| 4. Negative variance components                          | 22 |
| 4.1. Linear mixed model                                  | 23 |
| 4.2. Generalized linear mixed & combined models          | 25 |

ii

### Part 1:

**Introductory** material

# 1.1 Demographic, historical data of Moerzeke

- Moerzeke is a small village in the center of Flanders, within the province of East Flanders
  - It is a geographical isolate
  - Mainly populated by farmers until well into the 20th century
  - More textile industry oriented from the middle of the 19th century onwards
  - **Fertility** was traditionally **high** and dropped at the beginning of the 20th century



- The information in the database is drawn from church and civil registers
- The database contains information of individuals who were born, married or died in Moerzeke
- Focus is laid on the familial transmission of longevity, i.e., a time-to-event outcome



• A sample of 474 families is taken:



- A total of 457 'complete' families, based on specific criteria
- ullet Recover additional observations  $\Rightarrow$  17 'censored' families
- Much between- and within-household variability

• And even be categorized in the sex of the first child:



### Part 2:

Methodology

# 2.1 The classical Weibull- and exponential model

- Let  $T_i$  be the longevity of mother, father and first-born child, independently of each other (i = 1, ..., 3)
- Outcome belongs to the family of non-Gaussian outcomes
- The Generalized Linear Model:
  - All  $T_i$  have densities  $f(t_i|\theta_i,\phi)$  which belong to the exponential family:

$$f(t_i|\theta_i,\phi) = \exp\left\{\phi^{-1}[t_i\theta_i - \psi(\theta_i)] + c(t_i,\phi)\right\}$$

- ullet natural parameter  $\longrightarrow$   $heta_i = oldsymbol{x_i'}oldsymbol{eta}$   $\longleftarrow$  linear predictor
- Scale parameter (dispersion parameter):  $\phi$
- Inverse link function:  $\psi'(.)$

- Mean-variance relationship:  $\operatorname{Var}(T_i) = \phi \psi'' \left[ \psi'^{-1}(\mathsf{E}(T_i)) \right] = \phi v(\mathsf{E}(T_i))$
- Special cases: Exponential- and Weibull model

| Element        | notation         | time to event          |                                                                                     |  |  |
|----------------|------------------|------------------------|-------------------------------------------------------------------------------------|--|--|
| Model          |                  | Exponential            | Weibull                                                                             |  |  |
| Model          | $f(t_i)$         | $arphi e^{-arphi t_i}$ | $\varphi \rho t_i^{ ho-1} e^{-\varphi t_i^{ ho}}$                                   |  |  |
| Nat. param     | $	heta_i$        | $-\varphi$             |                                                                                     |  |  |
| Mean function  | $\psi(\theta_i)$ | $-\ln(-\theta_i)$      |                                                                                     |  |  |
| Norm. constant | $c(t_i,\phi)$    | 0                      |                                                                                     |  |  |
| Dispersion     | $\phi$           | 1                      |                                                                                     |  |  |
| Mean           | $E(T_i)$         | $arphi^{-1}$           | $\varphi^{-1/\rho}\Gamma(\rho^{-1}+1)$                                              |  |  |
| Variance       | $Var(T_i)$       | $arphi^{-2}$           | $\varphi^{-2/\rho} \left[ \Gamma(2\rho^{-1} + 1) - \Gamma(\rho^{-1} + 1)^2 \right]$ |  |  |

## 2.2 Adjust for extra dispersion

- Mean-variance relationship available
- Different approaches to account for extra dispersion
  - Approach 1:  $\phi \neq 1 \Longrightarrow Var(T_i) = \phi \cdot E(T_i)^2$
  - Approach 2: Two-stage approach

$$f(t_i \mid \theta_i) = \exp\{\phi^{-1} \cdot [t_i \cdot h(\theta_i) - g(\theta_i)] + c(t_i, \phi)\},$$
  
$$f(\theta_i) = \exp\{\gamma \cdot [\psi \cdot h(\theta_i) - g(\theta_i)] + c^*(t_i, \psi)\},$$

### • Special cases: Exponential-gamma and Weibull-gamma model

| Element     | notation           | time to event                                                                                          |                                                                                                                   |  |  |
|-------------|--------------------|--------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------|--|--|
| Model       |                    | Exponential-gamma                                                                                      | Weibull-gamma                                                                                                     |  |  |
| Hier. model | $f(t_i \theta_i)$  | $\varphi \theta_i e^{-\varphi \theta_i t_i}$                                                           | $\varphi \theta_i \rho t_i^{\rho-1} e^{-\varphi \theta_i t_i^{\rho}}$                                             |  |  |
| RE model    | $f(\theta_i)$      | $\frac{\theta_i^{\alpha-1}e^{-\theta_i/\beta}}{\beta^{\alpha}\Gamma(\alpha)}$                          | $\frac{\theta_i^{\alpha-1}e^{-\theta_i/\beta}}{\beta^{\alpha}\Gamma(\alpha)}$                                     |  |  |
| Marg. model | $f(t_i)$           | $rac{arphilphaeta}{(1+arphieta t_i)^{lpha+1}}$                                                        | $rac{arphi ho t_i^{ ho-1}lphaeta}{(1+arphieta t_i^{ ho})^{lpha+1}}$                                              |  |  |
|             | $h(	heta_i)$       | $-	heta_i$                                                                                             | $-	heta_i$                                                                                                        |  |  |
|             | $g(	heta_i)$       | $-\ln(\theta_i)/arphi$                                                                                 | $-\ln(	heta_i)/arphi$                                                                                             |  |  |
|             | $\phi$             | 1/arphi                                                                                                | 1/arphi                                                                                                           |  |  |
|             | $\gamma$           | $\varphi(\alpha-1)$                                                                                    | $\varphi(\alpha-1)$                                                                                               |  |  |
|             | $\psi$             | $[\beta \varphi(\alpha-1)]^{-1}$                                                                       | $[eta arphi (lpha - 1)]^{-1}$                                                                                     |  |  |
|             | $c(t_i,\phi)$      | $\ln(arphi)$                                                                                           | $\ln\left(arphi ho t_i^{ ho-1} ight)$                                                                             |  |  |
|             | $c^*(\gamma,\psi)$ | $\frac{\gamma+\varphi}{\varphi}\ln(\gamma\psi) - \ln\Gamma\left(\frac{\gamma+\varphi}{\varphi}\right)$ | $\frac{\gamma+\varphi}{\varphi}\ln(\gamma\psi) - \ln\Gamma\left(\frac{\gamma+\varphi}{\varphi}\right)$            |  |  |
| Mean        | E(Y)               | $[arphi(lpha-1)eta]^{-1}$                                                                              | $\frac{\Gamma(\alpha - \rho^{-1})\Gamma(\rho^{-1} + 1)}{(\varphi\beta)^{1/\rho}\Gamma(\alpha)}$                   |  |  |
| Variance    | Var(Y)             | $\alpha[\varphi^2(\alpha-1)^2(\alpha-2)\beta^2]^{-1}$                                                  | $\frac{1}{\rho(\varphi\beta)^{2/\rho}\Gamma(\alpha)} \left[ 2\Gamma(\alpha-2\rho^{-1})\Gamma(2\rho^{-1}) \right]$ |  |  |
|             |                    |                                                                                                        | $-\frac{\Gamma(\alpha-\rho^{-1})^2\Gamma(\rho^{-1})^2}{\rho\Gamma(\alpha)}\bigg]$                                 |  |  |

## 2.3 Adjust for hierarchical structures

- Family members are allocated within a household
   Hierarchical structure is present!
- Notation of  $T_i$  now extends to  $T_{ij}$ , which presents the longevity of mother, father and first child (j = 1, 2, 3) in household i (i = 1, ..., 474)
- The Generalized Linear Mixed Model:

$$f_i(t_{ij}|\boldsymbol{b_i},\boldsymbol{\beta},\phi) = \exp\left\{\phi^{-1}[t_{ij}\theta_{ij} - \psi(\theta_{ij})] + c(t_{ij},\phi)\right\}$$
$$\eta(\mu_{ij}) = \eta[E(T_{ij}|\boldsymbol{b_i})] = \boldsymbol{x'_{ij}}\boldsymbol{\beta} + \boldsymbol{z'_{ij}}\boldsymbol{b_i}$$
$$\boldsymbol{b_i} \sim N(\boldsymbol{0},D)$$

11

Special case: The Weibull-normal model

$$f(\mathbf{t}_i \mid \mathbf{b}_i) = \prod_{j=1}^{3} \lambda \cdot \rho \cdot t_{ij}^{\rho-1} \cdot e^{\mathbf{x}'_{ij} \cdot \beta + \mathbf{z}'_{ij} \cdot \mathbf{b}_i} \cdot e^{-\lambda \cdot t_{ij}^{\rho} \cdot e^{\mathbf{x}'_{ij} \cdot \beta + \mathbf{z}'_{ij} \cdot \mathbf{b}_i},$$

$$f(\mathbf{b}_i) = \frac{1}{(2 \cdot \pi)^{q/2} \cdot |D|^{1/2}} \cdot e^{-\frac{1}{2} \cdot \mathbf{b}_i' \cdot D^{-1} \cdot \mathbf{b}_i}.$$

## 2.4 The combined model

- Until now, both complexities were treated separately
- Is there a way to combine both strategies simultaneously? YES!!!
- The Combined Model:

$$f_{i}(t_{ij}|\boldsymbol{b_{i}},\boldsymbol{\beta}) = \exp\left\{\phi^{-1}[t_{ij}\lambda_{ij} - \psi(\lambda_{ij})] + c(t_{ij},\phi)\right\}$$

$$E(T_{ij}|\theta_{ij},\boldsymbol{b_{i}}) = \mu_{ij}^{c} = \theta_{ij}\kappa_{ij}$$

$$\kappa_{ij} = g(\boldsymbol{x}_{ij}'\boldsymbol{\xi} + \boldsymbol{z}_{ij}'\boldsymbol{b_{i}})$$

$$\theta_{ij} \sim \mathcal{G}_{ij}(\beta_{ij},\sigma_{ij}^{2})$$

$$\boldsymbol{b_{i}} \sim N(\boldsymbol{0},D)$$

$$\eta_{ij} = \boldsymbol{x}_{ij}'\boldsymbol{\xi} + \boldsymbol{z}_{ij}'\boldsymbol{b_{i}}$$

Special case: Weibull-gamma-normal model

$$f(\mathbf{t}_{i} \mid \theta_{i}, \mathbf{b}_{i}) = \prod_{j=1}^{3} \lambda \cdot \rho \cdot \theta_{ij} \cdot t_{ij}^{\rho-1} \cdot e^{\mathbf{x}_{ij}' \cdot \beta + \mathbf{z}_{ij}' \cdot \mathbf{b}_{i}} \cdot e^{-\lambda \cdot t_{ij}^{\rho} \cdot \theta_{ij} \cdot e^{\mathbf{x}_{ij}' \cdot \beta + \mathbf{z}_{ij}' \cdot \mathbf{b}_{i}}}$$

$$f(\theta_{i}) = \prod_{j=1}^{3} \frac{1}{\beta_{j}^{\alpha_{j}} \cdot \Gamma(\alpha_{j})} \cdot \theta_{ij}^{\alpha_{j}-1} \cdot e^{-\theta_{ij}/\beta_{j}},$$

$$f(\mathbf{b}_{i}) = \frac{1}{(2 \cdot \pi)^{q/2} \cdot |D|^{1/2}} \cdot e^{-\frac{1}{2} \cdot \mathbf{b}_{i}' \cdot D^{-1} \cdot \mathbf{b}_{i}}.$$

- Such complex models can have some drawbacks:
  - Attendance of analytically closed-form expressions? If not, approximation
    methods need to be used (e.g., Taylor-series expansion based methods; Laplace
    approximations; numeric integration)
  - Weibull-gamma-normal model ⇒ Analytical closed-form expressions exist!!

#### Marginal density:

$$f(\boldsymbol{t}_{i}) = \sum_{(m_{1},\dots,m_{3})} \prod_{j=1}^{3} \frac{(-1)^{m_{j}} \Gamma(\alpha_{j} + m_{j} + 1)\beta_{j}^{m_{j}+1}}{\Gamma(\alpha_{j})} \lambda^{m_{j}+1} \rho t_{ij}^{(m_{j}+1)\rho-1} \times \exp\left\{ (m_{j} + 1) \left[ \boldsymbol{x}'_{ij} \boldsymbol{\beta} + \frac{1}{2} (m_{j} + 1) \cdot \boldsymbol{z}'_{ij} D \boldsymbol{z}_{ij} \right] \right\}$$

#### Marginal moments:

$$E(T_{ij}^k) = \frac{\alpha_j B(\alpha_j - k/\rho, k/\rho + 1)}{\lambda^{k/\rho} \beta_j^{k/\rho}} \exp\left(-\frac{k}{\rho} \boldsymbol{x}_{ij}' \boldsymbol{\beta} + \frac{k^2}{2\rho^2} \boldsymbol{z}_{ij}' D \boldsymbol{z}_{ij}\right)$$

$$E(T_{ij}) = \frac{\alpha_j B(\alpha_j - 1/\rho, 1/\rho + 1)}{\lambda^{1/\rho} \beta_j^{1/\rho}} \exp\left(-\frac{1}{\rho} \boldsymbol{x}'_{ij} \boldsymbol{\beta} + \frac{1}{2\rho^2} \boldsymbol{z}'_{ij} D \boldsymbol{z}_{ij}\right)$$

$$\operatorname{Var}(T_{ij}) = \frac{\alpha_{j}}{\lambda^{2/\rho} \beta_{j}^{2\rho}} \exp\left(-\frac{2}{\rho} \boldsymbol{x}_{ij}' \boldsymbol{\beta} + \frac{1}{\rho^{2}} \boldsymbol{z}_{ij}' D \boldsymbol{z}_{ij}\right)$$

$$\times \left[B\left(\alpha_{j} - 2/\rho, 2/\rho + 1\right) \exp\left(\frac{1}{\rho^{2}} \boldsymbol{z}_{ij}' D \boldsymbol{z}_{ij}\right) - \alpha_{j} B\left(\alpha_{j} - \frac{1}{\rho}, \frac{1}{\rho} + 1\right)^{2}\right]$$

$$\operatorname{Cov}(T_{ij}, T_{ik}) = \frac{\alpha_{j} \alpha_{k}}{\lambda^{2/\rho} \beta_{j}^{1/\rho} \beta_{k}^{1/\rho}} \exp\left[-\frac{1}{\rho} (\boldsymbol{x}_{ij}' \boldsymbol{\beta} + \boldsymbol{x}_{ik}' \boldsymbol{\beta})\right]$$

$$\times B\left(\alpha_{j} - \frac{1}{\rho}, \frac{1}{\rho} + 1\right) B\left(\alpha_{k} - \frac{1}{\rho}, \frac{1}{\rho} + 1\right)$$

$$\times \exp\left[\frac{1}{2\rho^{2}} (\boldsymbol{z}_{ij}' D \boldsymbol{z}_{ij} + \boldsymbol{z}_{ik}' D \boldsymbol{z}_{ik})\right] \left[\exp\left(\frac{1}{\rho^{2}} \boldsymbol{z}_{ij}' D \boldsymbol{z}_{ik}\right) - 1\right]$$

### Part 3:

**Analyzing the Moerzeke data** 

## 3.1 Findings with the multivariate Plackett Dale model

#### Main conclusions:

- The estimated **association parameter** between **mother** and **child** is **1.349** (95% CI = [1.002;1.696]), indicating a **positive association** between them;
- However, for father-child, the value seems to be lower (0.983; not statistically significant).

# 3.2 Extra findings with the combined modeling framework

• The proposed exponential-gamma-normal model is formulate as

$$f_{T_{i}}(\mathbf{t}_{i} \mid \boldsymbol{\theta}_{i}, \mathbf{b}_{i}) = \prod_{j=1}^{3} \theta_{ij} \cdot e^{\Delta_{ij}} \cdot e^{-t_{ij} \cdot \theta_{ij} \cdot e^{\Delta_{ij}}},$$

$$\Delta_{ij} = \xi_{0} + \xi_{\varsigma} \cdot S_{i} + \xi_{\mathsf{yB}} \cdot Y_{ij} + \xi_{\mathsf{NN}} \cdot F_{ij} + \xi_{\mathsf{NN}} \cdot M_{ij} + b_{i},$$

$$f(\boldsymbol{\theta}_{i}) = \prod_{j=1}^{3} \frac{1}{\alpha^{-\alpha} \cdot \Gamma(\alpha)} \cdot \theta_{ij}^{\alpha-1} \cdot e^{-\alpha \cdot \theta_{ij}},$$

$$f(b_{i}) = \frac{1}{(2 \cdot \pi \cdot d)^{1/2}} \cdot e^{-d/2},$$

#### where

- $S_i = 0$  if the sex of the first child in household i is female and 1 if it is male;
- $F_{ij} = 1$  if person j in household i is the father and 0 if it is not the father;
- $M_{ij} = 1$  if person j in household i is the mother and 0 if it is not the mother;

- The year of birth  $Y_{ij}$ , which is subject-specific
- Results of fitting several exponential models:

|                         |                                | <u>E—</u>            | <u>EG-</u>           | <u>E-N</u>              | <u>EGN</u>              |
|-------------------------|--------------------------------|----------------------|----------------------|-------------------------|-------------------------|
| Effect                  | Par.                           | Estimate (s.e.)      | Estimate (s.e.)      | Estimate (s.e.)         | Estimate (s.e.)         |
| Intercept               | $\xi_0$                        | -0.7357 (2.0636)     | $-0.7354 \ (2.0657)$ | -0.7357 (2.0636)        | -0.7355 (2.0659)        |
| Sex of first child      | $\xi_{G}$                      | $-0.0454 \ (0.0541)$ | $-0.0454 \ (0.0542)$ | $-0.0454 \ (0.0541)$    | $-0.0454 \ (0.0542)$    |
| Year of Birth           | $\xi_{\scriptscriptstyle{YB}}$ | $-0.5471 \ (1.1290)$ | $-0.5471 \ (1.1302)$ | $-0.5471 \ (0.9600)$    | $-0.5471 \ (1.1303)$    |
| Indicator of Father     | $\xi_{IN2}$                    | $-0.1524 \ (0.0463)$ | $-0.1526 \ (0.0765)$ | $-0.1524 \ (0.0764)$    | $-0.1526 \ (0.0765)$    |
| Indicator of Mother     | $\xi_{\text{IN1}}$             | $-0.1134 \ (0.0744)$ | $-0.1135 \ (0.0745)$ | $-0.1134 \ (0.0744)$    | $-0.1135 \ (0.0745)$    |
| Std. dev. random effect | $\sqrt{d}$                     |                      |                      | $-6.06E - 8 \ (0.0284)$ | $5.471E - 7 \ (0.0284)$ |
| Gamma parameter         | $\alpha$                       |                      | 545.01 (359.54)      |                         | 500.01 (315.96)         |
| -2 log-likelihood       |                                | 7777.0               | 7779.3               | 7777.0                  | 7779.6                  |

**⇒** Possible indication of negative variance components!

#### • Digging a little deeper:



- Indication that underdispersion is present
- Note: Normal random effects induce both correlation and over-underdispersion

Belgium, October 21, 2016

21

#### Part 4:

**Negative variance components** 

## 4.1 Linear mixed model

- Start simple with the random intercept approach
  - Conditional model:

$$\mathbf{Y}_i|b_i \sim N(X_i \cdot \beta_i + b_i, \sigma^2),$$
  
 $b_i \sim N(0, \mathbf{d}^2).$ 

- Constraint:  $\sigma^2$  and  $d^2$  require to be POSI-TIVE!
- Marginal model:

$$\mathbf{Y}_i \sim N(X_i \cdot \beta, \mathbf{d}^2 \cdot \mathbf{J} + \sigma^2 \cdot \mathbf{I}).$$

• Constraint:  $d^2 \cdot J + \sigma^2 \cdot I$  require to be POSITIVE DEFINITE! (satisfied if  $\rho = d^2/(d^2 + \sigma^2) \geq -(n_i - 1)^{-1}$ )



 $\Rightarrow$  **NEGATIVE VALUES** for  $d^2$  are perfectly acceptable!

- In the marginal model,  $d^2$  is interpreted as a VARIANCE COMPONENT (NOT as a variance!);
- Negative values for  $d^2$  are perfectly possible in practice, e.g., in a **COMPETITIVE SETTING**:



• The **asymptotic null distribution** is well known to be  $\chi_1^2$  for the marginal model, while this is  $\frac{1}{2}\chi_1^2 + \frac{1}{2}\chi_0^2$  for the conditional model

## 4.2 Generalized linear mixed & combined models

- Investigating hierarchical and marginal views for negative variance components and/or underdispersion become more complex in these frameworks
- Classical software procedures like **NLMIXED** encompasses numerical optimization algorithms, which often follows a **hierarchical viewpoint** 
  - Limitation: No allowance for negative estimates of the variance components

