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Chapter 1

General Introduction

1.1 Introduction

Life science studies regularly deal with complex data structures. Examples are
longitudinally and/or hierarchically collected data, where subjects/clusters are
repeatedly measured. While these structures are often observed in practice,
statistical inferences on these studies are frequently challenging. In particular,
statistical modeling frameworks are needed that (perfectly) reflect the design
and characterizations of the study to avoid bias in the results. These include
the correct treatment of continuous (e.g., cholesterol, diastolic blood pressure),
binary (e.g., disease yes/no), count (e.g., number of epileptic seizures), and/or
time-to-event (e.g., time untill having the COVID-19 disease) data, together by
taking into account the full heterogeneity/homogeneity of the data.

In case of Gaussian outcomes, linear mixed models (LMMs) have become
an attractive instrument in the literature (Laird and Ware, 1982; Verbeke and
Lesaffre, 1996; Verbeke and Molenberghs, 2000), due to the flexibility of so-
called random effects and a versatile range of possible covariance structures. For
non-Gaussian outcomes, usually modeled with exponential family (EF; Nelder
and Wedderburn, 1972; McCullagh and Nelder, 1989; Jørgensen, 1987) mem-
bers, generalized linear mixed models (GLMMs; Thall and Vail, 1990; Dean,
1991; Engel and Keen, 1994) are commonly preferred; these combine ideas of
generalized linear models (GLMs; Nelder and Wedderburn, 1972; McCullagh and
Nelder, 1989; Jørgensen, 1987) with random effects. Unfortunately, due to the
predefined mean-variance link in non-Gaussian GLMs, the variance in the data
is sometimes insufficiently specified by the models. Two phenomena can occur:
Over- and underdispersion; i.e., when the variability from the data is greater and
lower, respectively, than the theoretical variance (limited by the mean-variance
association) under the assumed model. Apart from these, other aspects like zero-
inflation and -deflation can occur as well, alongside data that embrace heavy-tails.

1
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We speak about zero-inflation if the data possess a surplus of zero responses than
was foreseen from the model. Zero-deflation is defined when the data has less
zero outcomes than was expected from the model.

Handling these phenomena in modeling strategies are crucial due to the pos-
sible flaws in point and precision estimation on key parameters (Paul and Plack-
ett, 1978; Cox, 1983; Breslow, 1990), hereby leading to potentially erroneous
inferences. In medicine, for example, a significant treatment might be rated
as non-significant, and vice versa. The standard errors obtained can be under-
or overestimated. We explore existing methodology in the literature, highlight-
ing some of the limitations that these models and their inferences have. New
approaches are constructed to tackle these constraints.

1.2 Motivating Case Studies

The motivation for conducting this research originates from sociological and
life science studies where phenomena like dispersion and zero-inflation, together
with longitudinal and/or clustered structures are present. Two motivating case
studies are examined, i.e., the Moerzeke and epilepsy study. In what follows, a
brief introduction is given around these studies.

1.2.1 The Moerzeke Study

In the Moerzeke study, i.e., a historical population study of Moerzeke, a small
town based in Flanders, Belgium, civil and parochial registers were available
including all persons who were born, died, or married in Moerzeke between 1700
and 1976. After reorganizing all available registers into a family database, a total
of 5107 families were gathered, containing the primary and secondary generation,
i.e., every person and his/her partner, and the children of the primary generation,
respectively. Socio-demographic features such as age, sex, migration background
of the children, and marital status were collected as well.

Main focus of this study is to examine the familial transmittance of sur-
vival among household members. Since individuals are included in households,
i.e., a clustered data structure, the examination of homogeneity/heterogeneity in
survival remains unexplored in the literature.

1.2.2 The Epilepsy Study

A randomized, double-blinded, parallel group multi-center study is carried out
aiming to compare placebo with a new anti-epileptic drug (AED), in combination
with one or two other AEDs. At the start of the study, 45 patients were assigned



Chapter 1 3

to the placebo group, and 44 to the active (new) treatment group. Patients
were repeatedly followed for several weeks - during which the number of epileptic
seizures experienced in the last week - were counted, i.e., since the last time
the outcome was measured. The main research question is whether or not the
new treatment reduces the number of epileptic seizures. A full description of the
epilepsy dataset is provided in Faught et al. (1996).

1.3 The Generalized Linear Model

The (univariate) GLMs (Nelder and Wedderburn, 1972; McCullagh and Nelder,
1989; Jørgensen, 1987) are often used as golden standard for analyzing (non-
)Gaussian outcomes in many research domains. Warne (2020) and Myers et al.
(2012), for example, pointed out the practical relevance of using GLMs in the
domains of social sciences and engineering & physical sciences, respectively. In
this framework, the response variable Yi, i = 1, . . . , N, follows an EF distribution
that takes the form

f(yi) ≡ f(yi | ν, φ) = exp{φ−1 · [yi · ν − ψ(ν)] + c(yi, φ)}. (1.1)

Here, ν (“natural parameter”) and φ (“dispersion parameter”) defines a distinct
collection of unknown parameters, and ψ(·) and c(·, ·) are known functions.

The mean and variance are expressed by

E(Y) = µ = ψ′(ν), (1.2)

Var(Y) = σ2 = φ · ψ′′(ν), (1.3)

respectively, entailing a mean-variance relationship as follows: σ2 = φ · ψ′′(ν) =
φ · ψ′′[ψ′−1(µ)] = φ · v(µ), with v(·) = ψ′′(ψ′−1(·)) the so-called variance func-
tion. The EF includes many well-known distributions such as the normal (for
continuous data), Poisson (for count data), binomial/Bernoulli (for binary data),
and exponential and Weibull (for time-to-event data) distribution. Remark that
the Weibull distribution does not traditionally belong to the EF, though in a con-
trived manner by replacing Y with Y ρ, where ρ = 1 expresses the more simple
exponential distribution. In case φ = 1, the EF is also referred as the natural
exponential family (NEF).

In GLMs, the mean function µ is often associated with covariates xi through
a so-called link function h, i.e., h(µ) = η = xi ·ξ, with η referred to as the linear
predictor, indicating the possibility to make inferences on a p-dimensional vector
of unknown regression parameters ξ. These inferences are commonly achieved
by maximum likelihood or quasi-likelihood principles. In the latter case, only the
identification of the first two moments (1.2) and (1.3) is needed instead of a full



4 Chapter 1

likelihood specification, implying that no full distributional assumptions need to
be made. In those instances, a particular set of estimating equations is needed,
where the solution is entitled as the quasi-likelihood estimates.

1.4 Dispersion Model Frameworks

In practice, the restricted mean-variance relationship in most GLMs are often
insufficient to adequately capture the variability of the data, causing serious flaws
in point and precision estimations on covariates/factors relevant for clinicians,
sociologists, etc. In clinical trial studies, for example, a non-significant treatment
might be assessed as significant, and vice versa.

For these and other reasons (e.g., zero-inflation/-deflation and heavy tails
within the data), alternative/extended frameworks have been suggested and dis-
cussed in the literature. A first, and straight-forward step to embrace dispersion
is to permit the dispersion parameter φ in Eq. (1.3) vary across values, in agree-
ment with the so-called moment-based approach. Implementations with fully
parametric assumptions can be carried out as well. Another way is through the
so-called two-stage approach, i.e., by putting distributional assumptions on the
model- or latent-parameter θi (also called a random effect), denoted by f(θi).
Conditional on the random effect, a model is considered for the response, i.e.,
f(yi | θi). The so-called marginal model f(yi) is then obtained through the
equation

f(yi) =

∫
θ

f(yi | θi)f(θi)dθi. (1.4)

In statistical terminology, f(yi | θi), together with f(θi), is often referred as the
conditional/hierarchical notation, while Eq. (1.4) presents the marginal notation.
Throughout this thesis, the same terminology will be used.

Examples in the literature can be found on both methods. In count modeling,
for example, the quasi-Poisson and negative binomial model exist and can be
allocated in the former and latter procedure, respectively. The latter model even
enjoys the property of conjugacy (Cox and Hinkley, 1979; Lee et al., 2018),
i.e., where akin algebraic formulations are used for the hierarchical and random
effects densities so that a general closed-form expression can be determined from
Eq. (1.4), making it an interesting framework to explore analytically. Details
can be found in Supplementary Material S.4.1 and S.4.2. For time-to-event
outcomes, examples like the exponential-gamma and Weibull-gamma exist, where
the property of conjugacy is also retained (Table 1.1).

In our motivating case studies (Section 1.2), counts and time-to-event out-
comes are of interest. Therefore, existing and new approaches are examined for
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Table 1.1: Hierarchical & its marginal formulation for the exponential-gamma
and Weibull-gamma models, with corresponding mean and variance expres-
sion. Γ(.) expresses the gamma function.

Element Notation Exponential-gamma Weibull-gamma

Hier. model f(yi | θi) ϕ · θi · e−ϕ·θi·yi ϕ · θi · ρ · yρ−1
i · e−ϕ·θi·y

ρ
i

RE model f(θi)
θα−1
i ·e−θi/β
βα·Γ(α)

θα−1
i ·e−θi/β
βα·Γ(α)

Marg. model f(yi)
ϕ·α·β

(1+ϕ·β·yi)α+1

ϕ·ρ·yρ−1
i ·α·β

(1+ϕ·β·yρi )α+1

Mean E(Y) [ϕ · (α− 1) · β]−1 Γ(α−ρ−1)·Γ(ρ−1+1)

(ϕ·β)1/ρ·Γ(α)

Variance Var(Y) α · [ϕ2 · (α− 1)2 · (α− 2) · β2]
−1 1

ρ·(ϕ·β)1/ρ·Γ(α)
· [2 · Γ(α− 2 · ρ−1)

·Γ(2 · ρ−1)− Γ(α−ρ−1)2·Γ(ρ−1)2

ρ·Γ(α)

]

these type of responses. Two techniques will be contrasted, i.e., the two-stage
approach, where extra dispersion is captured within the random effect structure,
and a class of flexible distributions that offers enough flexibility to apprehend
dispersion. Principles like zero-inflation/-deflation and heavy-tailed profiles will
be investigated as well for most models considered in this thesis.

1.5 Models for Correlated Data

Alternatively, random effects can be entered directly in the linear predictor η of
GLMs, giving rise to the so-called family of GLMMs (Thall and Vail, 1990; Dean,
1991; Engel and Keen, 1994; Wolfinger and O’Connell, 1993) where LMMs are a
special case of. Including random effects in the linear predictor have the advan-
tage of (1) taking into account the longitudinal and hierarchical data structures,
and (2) examining between- and within-subject correlations, through a single
modeling framework. In what follows, we will give a brief discussion on these
basic frameworks, i.e., the LMM and more general GLMM framework, and some
of their extensions.

1.5.1 Linear Mixed Models

LMMs have become an attractive approach for analyzing longitudinal and/or
hierarchical Gaussian data. Random effects in these models are often assumed
normally distributed, but can be considered different as well. In the hierarchical
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and marginal notation, the classical LMM framework can be formulated as

Yi | bi ∼ N(

µci︷ ︸︸ ︷
Xi · ξ + Zi · bi,Σi), (1.5)

bi ∼ N (0, D) ; (1.6)

Yi ∼ N(Xi · ξ︸ ︷︷ ︸
µmi

,Zi ·D · Z
′

i + Σi), (1.7)

respectively. Yi is the ni-dimensional vector of repeated outcomes for cluster/-
subject i, i = 1, . . . , N . ξ and bi are the p- and q-dimensional vector of unknown
regression parameters and random effects, respectively, where Xi and Zi are the
known corresponding design matrices with dimensions of respectively ni x p and
ni x q. Σi illustrates a ni x ni covariance matrix for the residuals and D presents
a q x q covariance matrix for the random effects. At last, µci(= E(Yi | bi)) and
µmi (= E(Yi)) are used to express the conditional and marginal vector of mean
structures, respectively.

1.5.2 Generalized Linear Mixed Models

GLMMs can be seen as a natural extension of LMMs towards GLM structures,
allowing researchers to conduct inferences on non-Gaussian responses within hi-
erarchical/longitudinal designs. Conditional on the q-dimensional random effects
vector bi (1.6), the outcomes are assumed to follow EF densities, expressed by

fi(yij | bi, ξ, φ) = exp{φ−1 · [yij · νij − ψ(νij)] + c(yij, φ)}, (1.8)

with

h[ψ′(νij)] = h(µcij) = ηij = x′ij · ξ + z′ij · bi, (1.9)

where xij and zij are the p- and q-dimensional vector of known covariate values
corresponding to the p- and q-dimensional vector of unknown fixed regression
parameters ξ and random effects bi, respectively. For counts and time-to-event
outcomes, examples like the Poisson[(1.8)]–normal[(1.6)] and Weibull[(1.8)]–
normal[(1.6)] models are standard used, with the exponential[(1.8)]–normal[(1.6)]
model as special case for the latter approach.

1.5.3 Combined Models

While GLMMs can be seen as a general class of models to deal with longi-
tudinal/hierarchical data, accounting for some of the dispersion as well, their
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given flexibility towards dispersion is sometimes limited in practical data settings.
Molenberghs et al. (2007) remarked that GLMMs often inadequately fit data
when dispersion and correlation between repeated measurements occur simulta-
neously. Therefore, Molenberghs et al. (2007) and Molenberghs et al. (2010)
developed the so-called combined model (CM) framework, by appending an ad-
ditional random effect vector θi = (θi1, ..., θini) within the GLMM structure that
directly enters the mean via a multiplicative factor:

fi(yij | bi, ξ,θi, φ) = exp{φ−1 · [yij · νij − ψ(νij)] + c(yij, φ)}, (1.10)

with conditional mean

ψ′(νij) = µcij = E(Yij | bi, ξ, θij) = θij · κij, (1.11)

Here, θij follows a predefined distribution Ξij with mean ζij and variance $ij, and
κij = h−1(ηij) = h−1(x

′
ij · ξ+ z

′
ij ·bi) for some link function h(.). Assumptions

for the random effects vector bi are held the same as before, i.e., Eq. (1.6). All
elements in the distribution of θij are subscripted by i and j, for generality of
notation. Though, one might determine common distributions for a particular
measurement j, or even common through i and j. Several choices for θij can
be made. First, concerning the elements θij of θi, different assumptions can be
drawn: (1) Independency among them; (2) dependency among them, indicating
that the class of univariate distributions Ξij must be modified by a multivariate
distribution; and (3) they correspond to each other, beneficial in applications
with exchangeable responses Yij. Second, it is natural to assume independency
among random effects θij and bi, even though this is not strictly necessary.
Third, by selecting conjugate distributions for θij, Molenberghs et al. (2010)
showed that closed-forms could be derived for the whole marginal distribution.
For counts and time-to-events, where the classical Poisson–normal and Weibull–
normal approach exist in the GLMM case, (conjugate) gamma distributions can
be used for θij, giving rise to the so-called Poisson–gamma–normal (PGN) and
Weibull–gamma–normal (WGN) models.

1.6 Inferences in Mixed Models

Inferences in mixed models are essential to reach conclusions on research ques-
tions of interest. In clinical trial research, for example, researchers are some-
times interested in the evaluation of the difference in response between a treated
and an untreated subject with the same level for their random effects, implying
subject-specific interpretations, while other researchers are more interested in the
average (global) treatment effect, indicating a population-averaged interpreta-
tion. Therefore, two viewpoints can be taken in mixed models, depending on the
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research question. In what follows, we will review these angles, together with
several estimation strategies that are currently available in the literature.

1.6.1 Subject-specific and Population-averaged Inferences

In the hierarchical LMM approach (1.5)–(1.7), the fixed parameters ξ have, next
to a subject-specific interpretation, also a population-average interpretation, i.e.,
E(Yij) = E[E(Yij | bi)] = Xi · ξ. This property does not generally hold in the
hierarchical GLMM framework (1.6) & (1.8)–(1.9) for non-Gaussian responses,
where a subject-specific interpretation is standard retrieved for these effects. In
the binary approach, for instance, where predictors and random effects parameters
are connected with the mean of a binary outcome Yij through the logit link,

E(Yij) = E[E(Yij | bi)] = E

[
ex
′
ij ·ξ+z

′
ij ·bi

1 + ex
′
ij ·ξ+z

′
ij ·bi

]
6= ex

′
ij ·ξ

1 + ex
′
ij ·ξ
. (1.12)

This hampers the ability to derive population-averaged interpretations within
GLMMs for non-Gaussian outcomes, notwithstanding these are often of interest.

Preferably, a direct marginal procedure may be used to ensure population-
averaged inferences. Liang and Zeger (1986) suggested so-called generalized
estimation equations (GEE), that expand GLMs by permitting for correlation
within cluster/subject via a so-called working correlation. Parameter estimates
remain consistent and asymptotically normal when misspecifying this working
correlation. This approach, however, lacks a full likelihood foundation, precluding
various inferential paths.

Combining ideas on GLMMs and GEE, Heagerty (1999) and Heagerty and
Zeger (2000) developed the so-called marginalized multilevel model (MMM) by
bringing the power of both together, so that the marginal mean µmi instead
of the conditional mean µci , i.e., the mean conditional on random effects, is
directly regressed with predictors. Following the same terminology as before,
where µcij denotes the conditional mean of EF densities (1.8), their MMMs can
be formulated as

g(µmij ) = x
′

ij · ξm, (1.13)

h(µcij) = ∆ij + z
′

ij · bi. (1.14)

The covariate vector ξm is superscripted to identify its directly marginal inter-
pretation, and ∆ij presents the so-called connector function between Eq. (1.13)
and (1.14), with a similar link function defined for the marginal and conditional
component, i.e., h(.) = g(.). Griswold and Zeger (2004) extended this work
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by allowing different link functions, and providing connections between marginal
and conditional models transparent. Specifically, the connector function ∆ij is
expressed as the solution of the equation

g−1(x
′

ij · ξm) =

∫
b

h−1(∆ij + z
′

ij · bi) · f(bi | D) · dbi. (1.15)

Extensions toward CMs are achieved as well, referred as the combined marginal-
ized multilevel model (COMMM; Iddi and Molenberghs, 2012; Efendi et al., 2014)
framework. Equivalent towards MMMs, this approach can be expressed as

µmij = g−1(x
′

ij · ξm), (1.16)

µcij = θij · κij = θij · h−1(∆ij + z
′

ij · bi), (1.17)

where the connecter function ∆ij is the solution of the function

g−1(x
′

ij · ξm) = E(θij) ·
∫
b

h−1(∆ij + z
′

ij · bi) · f(bi | D) · dbi. (1.18)

Examples in both frameworks can be found in the literature. In the CM
paradigm, for example, Iddi and Molenberghs (2012) and Efendi et al. (2014) ex-
pressed closed-form solutions for ∆ij, for the hierarchical PGN and WGN models,
respectively. In the WGN version (Efendi et al., 2014), for example, the following
expression was obtained for ∆ij:

∆ij = −log(αj · βj) + x′ij · ξm −
z
′
ij ·D · zij

2
. (1.19)

Here, αj and βj are the conventional gamma parameters, depending on mea-
surement j. Ultimately, these models will be used in data analysis later on
(Section 2.5.2).

1.6.2 Negative Variance Components

For the random effects parameters, often referred as variance components, a
similar reasoning can be followed regarding their interpretation in GLMMs and
CMs. In a hierarchical viewpoint, these variance components are interpreted as
variances, obvious. Hence, these ought to be non-negative, implying the need
for a one-sided testing paradigm on their inferences (Verbeke and Molenberghs,
2003). In the marginal case, however, the interpretation of variance disappears
and the components only contribute in the marginal model. This implies that
negative values can be obtained for these components with necessity that the
marginal variance-covariance matrix remains positive definite. This matrix is
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composed of elements from the random effects, alongside with the underlying
mean-variance association (if any) from the GLM. Evidently, a two-sided testing
framework is desired here.

This phenomenon is reasonable well understood in the literature for LMMs,
whereas such negative variance components relate to negative within-unit corre-
lations in many cases (Molenberghs and Verbeke, 2011), a situation that often
occurs in practice. In agricultural sciences, for example, studies exist where only
fixed resources such as water and/or nutrients are present in a plot and the plants
within this plot need to compete for it, implying the intraclass correlations to
become negative. In medicine, for instance, triplets inside the mother’s womb
need to battle for the same food sources.

Pryseley et al. (2011) discussed this phenomenon in GLMMs for counts and
binary outcomes, while Oliveira et al. (2017) explored it for the PGN model,
where the negative variance components emerge from either the conjugate ran-
dom effects θi, the normal random effects bi, or both, making the exploration
of it more broader. Specifically, there exists various reasons in non-Gaussian
frameworks like GLMMs and CMs where the phenomenon of negative variance
components can be observed, e.g., correlation, underdispersion, simultaneous
occurrence of high correlation & low overdispersion. A full discussion around
negative variance components in the PGN model can be found in Oliveira et al.
(2017), but can easily be expanded towards the WGN model (due to conjugacy
principles).

When inferences for variance components are obligated, it is crucial to deter-
mine a prior their range of values, i.e., either positive or also negative. In addition,
adequate estimation tools are needed to allow the fit of these components.

1.6.3 Estimation Strategies

Estimators of the mixed model parameters are derived by maximizing the marginal
likelihood

L(Υ,Ω) =
N∏
i=1

Li(Υ,Ω), (1.20)

where Υ and Ω present the list of fixed and random parameters, respectively, and
Li(Υ,Ω) is the marginal likelihood contribution of cluster/subject i, expressed
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by

Li(Υ,Ω) =

∫
b

(
ni∏
j=1

fi(yij | Υ,bi) · f(bi | D)

)
· dbi, (1.21)

Li(Υ,Ω) =

∫
b


ni∏
j=1


∫
θ

fi(yij | Υ,bi,θi) · f(θi | ζij, $ij) · dθi︸ ︷︷ ︸
fi(yij |Υ,ζij ,$ij ,bi)


·f(bi | D)] · dbi, (1.22)

for the GLMM and CM framework, respectively. Maximizing Eq. (1.20) is often
cumbersome due to the intractable integrals in Eq. (1.21)–(1.22). Indeed, unlike
LMMs, where an analytical closed-form expression exists for this integral, there
is often a lack of these in Eq. (1.21)–(1.22) for non-Gaussian outcomes. Even
when these exist, problems like infinite series can, for example, still be present,
making the approach of maximization still intractable. A good example for the
latter case is the WGN case, where the attendance of an analytically closed-
form expression exist for the marginal distribution but composed of infinite series
(Molenberghs et al., 2015). Therefore, different methods have been suggested in
the literature for approximating the integral in Eq. (1.21). For the CM approach,
Molenberghs et al. (2010) used partial marginalization ideas, by choosing conju-
gate distributions for θi such that closed-forms exist for fi(yij | Υ, ζij, $ij,bi),
making the problem of maximization identical to GLMMs. Therefore, we will
focus the discussion here towards GLMMs.

In general, two types of solutions exist. In the first approach, the integral
within Eq. (1.21) is approximated numerically such that the marginal likelihood
can be calculated and optimized. For approximating the integral numerically, ex-
amples such as Gauss-Hermite quadrature (GHQ; Naylor and Smith, 1982), adap-
tive Gauss-Hermite quadrature (AGHQ; Rabe-Hesketh et al., 2002) and Monte
Carlo integration exist, techniques that are standard integrated in many statis-
tical software packages, e.g., the NLMIXED procedure (SAS Institute, 1999).
To obtain the maximum of the marginal likelihood approximation, methods like
the simplex algorithm (Nelder and Mead, 1965), the steepest descent method
(Curry, 1944), the Newton-Raphson or (related) Fisher scoring algorithm (Long-
ford, 1987), and quasi-Newton methods (Broyden, 1967) are often used. In
the second approach, the integrand is approximated, such that a closed-form
can be found for the integral of the approximation. These include methods like
Laplace approximation (Tierney and Kadane, 1986) and quasi-likelihood ideas,
e.g., the penalized quasi-likelihood (PQL; Breslow and Clayton, 1993; Schall,
1991), marginal quasi-likelihood (MQL; Goldstein, 1991) and several of their ex-
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tensions (e.g., PQL2 and MQL2). A clear overview of these techniques, alongside
their advantages and disadvantages can be found in Tuerlinckx et al. (2006).

Unfortunately, limitations can occur when dealing with, for example, negative
variance components. In particular, when considering the marginal viewpoint and
negative variance components are expected, the possibility exists that negative
estimates cannot be guaranteed in the inferences due to the fact that the used
algorithm does simply not allow for it (i.e., when the algorithm adopts a hier-
archical specification in the estimation strategy). This aspect is avoided in the
Laplace approximation technique, allowing for negative variance components as
well. However, the reader should then be aware of the possible trade off be-
tween (1) the method’s precision and (2) the ability of fitting negative variance
components. In addition, the testing paradigm needs to be adapted, according
to the work of Verbeke and Molenberghs (2003). Therefore, extensions and/or
alternative routes are interesting to explore that enables the user to obtain unbi-
ased inferences and easily allow for estimation of negative variance components
as well.

1.7 Thesis Contribution

Many frameworks have been suggested in the literature that handle the longitudi-
nal and hierarchical structures within the data, with prominent members like the
random effects models as golden standard. These models have gained in pop-
ularity since the extension of LMMs for Gaussian data (Laird and Ware, 1982)
towards GLMMs for non-Gaussian data (Breslow and Clayton, 1993, Wolfinger
and O’Connell, 1993, and Engel and Keen, 1994) and their given flexibility in
modeling different types of outcomes and covariances structures. In some extend,
they also take into account some amount of variability in the data.

Understanding & extending these frameworks are essential in statistical re-
search to make the right decisions and predictions needed for life science studies
and beyond. For more than two decades, L-Biostat has extensively contributed
to this research, resulted in several peer-reviewed articles in renowned interna-
tional journals such as the Journal of the American Statistical Association and
Computational Statistics & Data Analysis. The research in this field is still on-
going. Molenberghs et al. (2007) and Molenberghs et al. (2010) showed that, by
using these GLMMs, the theoretical variability of the model often falls short to
properly model the data variability. Therefore, extensions have been proposed.
An example is the development of the CM (Molenberghs et al., 2010), to account
for extra dispersion. In case of variability reduction, e.g., settings where more ho-
mogeneity is observed than expected, shortcomings sometimes arise when using
these classical & extended models.
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The contribution of this thesis is composed of 4 parts:

–1– Dispersion detection in classical hierarchical frameworks & their short-
comings/boundaries in inferences

In this part of the thesis, we apply a GLMM approach and correspond-
ing CM extension for time-to-events, i.e., the WN and WGN model, re-
spectively, to highlight the presence of underdispersion in a clustered so-
ciological study. We demonstrate some of the boundaries that standard
estimation techniques like Gaussian quadratures have, and how it affects
the statistical inferences. The need to understand these complexities in
practice, detecting them in early phase of the analysis and adapting the
model design and/or estimation strategy for conducting valid inferences
are essential and needed to be handled with great care.

–2– Dispersion models in univariate structures

To examine alternative routes, focus is given on the basic building blocks
of GLMMs, i.e., GLMs, and the construction of several extensions/alterna-
tives. In particular, we look at alternative building blocks that flexible han-
dle basic problems like dispersion in univariate count data. These include
the exploration of existing methodology in the literature, and development
of new frameworks. In a further stage, these alternative methods are dis-
cussed and extended in the context of longitudinal/clustered frameworks.

To this end, the use of discrete versions of well-known continuous distribu-
tions and finite mixture models are examined in discrete data settings, and
extended if needed. Both techniques will embrace both over- and under-
dispersed settings, together with a range of zero-inflation/-deflation and
heavy-tail profiles.

–3– Dispersion models in longitudinal/hierarchical structures

In a further stage, the exploration of these (univariate) alternative models
is extended towards hierarchical/longitudinal data settings by incorporating
random effects in the model structure. These models are compared to the
classical GLMM approach and CM extension for both overdispersed and
underdispersed settings, putting particular focus on the so-called discrete
Weibull (DW; Nakagawa and Osaki, 1975) model without and with normal
random effects. Properties, limitations and advantages are examined in
detail, motivating the use of it in our case studies, i.e., modeling the
number of epilepsy attacks and (discrete) longevity within the epilepsy and
Moerzeke data, respectively.
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–4– Second-order generalized estimation equations in GLMMs

Because the GLMMs’ genesis is subject-specific, their fixed-effects pa-
rameters have a subject-specific interpretation. To obtain population-
average inferences, several authors have contributed to this. These include
work done by Heagerty (1999), Heagerty and Zeger (2000) and Griswold
and Zeger (2004). A similar reasoning applies for their variance compo-
nents, which characterizes the homogeneity/heterogeneity of the model.
In the subject-specific viewpoint, the random effects distribution is of in-
terest, implying positive definiteness of the variance-covariance matrix. In
the population-averaged case, the milder restriction of a positive definite
marginal variance-covariance matrix is all that is needed, implying that
some variance components in the mixed model may be negative, while
still producing a valid marginal interpretation. Pryseley et al. (2011) in-
vestigated this phenomenon in the GLMM setting, and theoretically linked
it with negative intraclass correlations, underdispersion, and others. Un-
fortunately, flexible estimation approaches in GLMMs are still lacking, in-
dicating limitations when modeling these designs. These limitations are
encountered in our analysis. Therefore, we construct flexible (closed-form)
second-order estimating equations for the first and second central-moments
of the marginal Poisson-normal mixed framework, allowing for the estima-
tion of negative variance components in the marginal approach.

Summary

Classical existing models are explored that accounts for dispersion and/or
correlated data. Limitations/boundaries are encountered in practical data
settings, suggesting the need for extensions in modeling and estimation
strategies. Alternative and new approaches are constructed, (partly) re-
solving these issues.

1.8 Outline of Thesis

This dissertation is composed of 6 chapters. Chapter 1 presents a general intro-
duction of the objectives of this research, alongside the motivating case studies
and a brief overview of existing methodology in this domain of research.

The next four chapters present the thesis’ contribution. Chapter 2 explores
details in line with objective 1. Existing and new modeling frameworks are con-
sidered and discussed in Chapter 3 and 4, corresponding to objective 3 and 2,
respectively. Chapter 5 investigates marginal first- and second-order moments
in a GLMM framework for counts, and uses these to construct second-order
generalized estimating equations, consistent with objective 4.
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In the last part of the thesis, i.e., Chapter 6, an overall conclusion is outlined
to the reader, apace with a formal discussion of some of their limitations, and
reflections on future research.
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Chapter 2

Two Clustered Time-to-event
Models to Study Inheritance in
Historic Survival Data

This chapter is based upon:

Luyts, M., Tibaldi, F., Van de Putte, B., Geys, H., Matthijs,
K., Molenberghs, G., and Verbeke, G. (2021). Two clustered time-
to-event models to study inheritance in historic survival data. In
preparation.
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Abstract

The focus is on the study of inheritance of survival in historic cohorts, where data

take the form of familial clusters. Apart from the time-to-event outcomes, also the as-

sociation between them needs to be accommodated. Attention is given to the situation

where data come from an isolate, which may induce underdispersion. Two modeling

strategies are contrasted: (1) A multivariate Plackett-Dale model (Tibaldi et al., 2004),

which is of a marginal nature and (2) a Weibull model with gamma frailties and nor-

mal random effects (Molenberghs et al., 2010), termed Weibull-gamma-normal, of a

hierarchical nature.

The methodologies are used to model a historic cohort from a small Flemish village,

a geographical isolate called Moerzeke (18th–20th century) (Matthijs et al., 2002).

Life history data are obtained from administrative registers, available from the post-

Napoleonic period. The main conclusion is that familial transmission mainly occurs

from mother to daughter. Underdispersion is detected.

2.1 Introduction

Interest lies in examining historic inheritance in survival among family members in
a small Flemish village called Moerzeke, geographically isolated at the time (18th-

20th century). Data are extracted from a historic demographic database, by
forming clusters of three members (father, mother, first child). The utilization of
hierarchical modeling techniques, accommodating the association among family
members, is necessary. Censoring will be taken into account, as well as extra-
model variation in the event times. Because of the isolated nature of Moerzeke,
one should not rule out underdispersion, meaning that the used model is not able
to adequately accommodate the lower variability present within the data, so the
models should ideally allow for this.

Two modeling strategies will be considered: A Plackett-Dale (PD) model
(Dale, 1986; Plackett, 1965; Mardia, 1970; Molenberghs and Lesaffre, 1994;
Tibaldi et al., 2004) and the Weibull-gamma-normal (WGN) model, an instance
of the so-called combined modeling (CM) framework of Molenberghs et al.
(2010).

The PD model allows for explicit modeling of the association structure and,
because of it is marginal model nature, produces directly interpretable so-called
global cross ratios (sometimes also called global odds ratios). Maximum like-
lihood (ML) estimation is often prohibitive, for which reason pseudo-likelihood
(PL) principles can be applied if needed (Geys et al., 1997; Tibaldi et al., 2004;
Molenberghs and Verbeke, 2005).

The WGN model flexibly allows for dependence between clustered outcomes
as well as for over-/underdispersion. While of a hierarchical nature, it can be
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parameterized such that population–averaged parameters ensue.
The remainder of the chapter is organized as follows. In Section 2.2, a

summary of the data, alongside the town from which it originates, is given.
Section 2.3 sketches the underlying methodology of the PD model with the PL
estimation and the WGN model. Adaptions of traditional hypothesis testing pro-
cedures (Wald, Score & likelihood ratio statistics) are needed in the PL paradigm.
Details about this testing framework can be found in Supplementary Materi-
als S.2. A brief discussion on familial transmittance of longevity is highlighted
in Section 2.4. In Section 2.5, data from the Moerzeke study are analyzed with
both methodologies, and conclusions, not only about the familial transmittance
of longevity, but also about underdispersion, are covered in Section 2.6.

2.2 The Moerzeke Data

In the international research community, the demographic history of Belgium has
been of interest for a long time. Both historic and demographic developments,
as well as the contributions made by Belgian researchers, have added to this
(Lescrauwaet et al., 2010; Vandresse, 2013).

Focus is placed on the analysis of historical data from Moerzeke, i.e., a small
town in the center of Flanders, the Dutch speaking part of Belgium, within the
province of East Flanders. It is a geographical isolate as it is almost completely
surrounded by a meander in the river Scheldt and by the river Durme. De Beule
(1962) and De Ridder (1986) detected that the population of Moerzeke, mainly

populated by farmers until well into the 20th century, rose from approximately
2000 in 1761 to 4706 in 1950, where fertility was traditionally high and dropped
at the beginning of the 20th century. Major mortality crises (mainly dysentery)

occurred in the 18th century. 24.8% of the children born in Moerzeke died within
the first year, but this happened less frequently as the 18th century progressed.
Infant and childhood mortality was strikingly high. Infant mortality did not drop
until the first decades of the 20th century. The life expectancy at age 50 steadily
rose for those born in the 19th century, reaching a peak at the end of the
observation period, i.e., those born after 1850. These times refer to the entire
lifespan.

A subset of 457 families will be extracted, by choosing all fathers born in
Moerzeke from 1750 to 1830, and then composing a household by including the
mother and first born child. Children already selected are not included again
as father or mother of new families, to avoid between-family correlation. All
included were born and died in Moerzeke (the so-called “stable population”). To
maintain data quality of the sample, inferences will be based on households in
which the child reaches at least the age of 10. For the group under study, the
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mean age at death for those who were born and deceased in Moerzeke was 71.9
years for men and 71.7 for women. The upper deciles for the lifespan are 83.3 for
mothers, 84.2 for fathers, 84.8 for sons, and 84.4 years for daughters, indicating
that boys, on average, live longer than girls. A possible reason for this occurrence
is that parents took extra care of boys. Knowing this research is about first-born
children, and a boy is an ancestor, this was particularly important for farmers,
the elite and the middle class. Figure 2.1 presents the bar plot of the lifespan,
expressed in decades, for the different family members.

Figure 2.1: Moerzeke data. Bar plot of the lifespan, expressed in decades, for
the different family members.

Civil and church registers were collected to construct the database, which can
be categorized as good quality and suitable for population studies. The database
holds information of individuals who were born, died or married in Moerzeke.

2.3 Modeling Framework

2.3.1 The Plackett-Dale Model

The multivariate Dale model for survival times (Tibaldi et al., 2004) will be re-
viewed. The model augments standard univariate survival distributions for each
of the family members (mother, father, and child) separately, with global cross
ratios, also termed global odds ratios, to describe the association between pairs
of survival outcomes. The main advantage is that the univariate distributions
derived from such a joint distribution are exactly equal to those that would be
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obtained, were univariate analyses done on each outcome separately. This prop-
erty is not automatically obtained with frailty models (Clayton, 1978; Hougaard,
1986) or conventional generalized linear mixed models (GLMM; Molenberghs and
Verbeke, 2005).

Another feature is the elegant way in which the association between the
survival outcomes is modeled. This is important when one is interested in a
separation between social and genetic aspects of longevity. Regarding the former,
it is a strong asset that a number of covariates describing social and demographic
aspects can be incorporated into the models for both survival values as well as
for the association. Sociological explanations often have empirical implications
in terms of sex and parity differences. For example, if inheritance of material
products, such as a farm, is sex and birth-order related, this must be reflected in
the sex and parity pattern of longevity inheritance.

The methodology will be applied to the Moerzeke data, introduced in Sec-
tion 2.2. Consider the (unadjusted) survival times T ∗ij of mother, father, and first
child (j = 1, 2, 3) of i = 1, . . . , 457(= N) families, and assume marginal Weibull
distributions for each adjusted survival time Tij, i.e., T ∗ij−{given threshold}j. To
avoid left-truncation, the threshold is held fixed at 10 years. The information of
household i can be formulated in vector notation as (Ti1, Ti2, Ti3,∆i1,∆i2,∆i3, xi1,
. . . , xini), with ni the length of the covariate vector. ∆ij indicates whether life-
time j in cluster i is observed (1) or censored (0). The data for family member
j is denoted by W ij = (Tij,∆ij,Xi). Xi expresses the ni-dimensional vector of
covariates.

The multivariate Plackett distribution can be specified for any number of
outcomes, using two-way and higher-order cross ratios to specify the associations
(Molenberghs and Lesaffre, 1994). Such a specification is unavoidable should
one choose for full ML inference. However, calculations quickly become very
cumbersome. Therefore, PL estimation will be utilized, following ideas of Tibaldi
et al. (2004), obviating the need to specify associations beyond the second order.
The PL function is of the pairwise form (le Cessie and Van Houwelingen, 1994;
Renard et al., 2004):

ln p`(Φ) =
N∑
i=1

∑
(r,`)∈S

ln fTr,T`(W ir,W i`,Φ), (2.1)

with S = {(r, `) | r < `, r = 1, 2, 3, ` = 1, 2, 3}, fTr,T`(W ir,W i`,Φ) =
∂FTr,T`(W ir,W i`,Φ)/∂W ir∂W i` the density function of the bivariate PD dis-
tribution (Dale, 1986; Mardia, 1970; Tibaldi et al., 2004), where
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FTr,T`(W ir,W i`,Φ) =
1+[F Tr (W ir)+F T`

(W i`)]·(θr`−1)−H[F Tr (W ir),F T`
(W i`),θr`]

2·(θr`−1)
, if θr` 6= 1,

F Tr(W ir) · F T`(W i`), if θr` = 1,
(2.2)

and

H[FTr(W ir), FT`(W i`), θr`] =√
{1 + (θr` − 1) · [FTr(W ir) · FT`(W i`)]}2

+4 · θr` · (1− θr`) · FTr(W ir) · FT`(W i`), (2.3)

with FTr and FT` the univariate marginal distribution functions, here of a Weibull
form. Φ = (θ′, ξ′,λ′,ρ′)′ is the vector of parameters with θ, ξ, and (λ′,ρ′)
the subvectors of association parameters θr`, coefficients corresponding to the
covariates X, and parameters from the Weibull distribution, respectively.

The PL estimator Φ̂ is determined as the maximizer of Eq. (2.1). Ap-
pendix S.1 shows details on consistency and asymptotic normality. The PD
model captures association between a pair of survival times Tr and T`, through
global cross ratios θr`(tr, t`):

θr`(tr, t`) =
FTr,T` · [1− FTr − FT` + FTr,T` ]

[FTr − FTr,T` ] · [FT` − FTr,T` ]
. (2.4)

θ = 1 corresponds to independence and the range is from 0 to +∞. The log odds
ratio is often used to avoid range restrictions and for which, due to symmetry,
standard errors are more readily interpretable. All plots will be based on the log
odds ratio. Supplementary Materials S.1 gives a connection with Kendall’s τ and
Spearman’s ρ.

The association between longevity of family members can be estimated with
the PL method. In the case of ML estimation, several tools can be applied to
test the parameters of the model such as Wald, score, or likelihood ratio tests.
However, these tests need to be extended in our case as it was done by Geys
et al. (1999) in the presence of clustered multivariate binary data. An overview
for what is needed for our purpose is given in Supplementary Materials S.2.

2.3.2 The Weibull-Gamma-Normal Model

The CM framework (Booth et al., 2003; Molenberghs et al., 2007; Molen-
berghs et al., 2010) is considered as an alternative random effects and frail-
ties (Duchateau and Janssen, 2007) based framework to model within-household
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association, using normal random effects like in a GLMM (Molenberghs and Ver-
beke, 2005) as well as dispersion (Hinde and Demétrio, 1998), through gamma
random effects. Capturing extra-model dispersion is cumbersome in the PD
framework.

For the Moerzeke data (Section 2.2), the WGN model takes the form:

fTi(ti | θi, bi) =
3∏
j=1

λj · ρj · t
ρj−1
ij · θij · eΩij · e−λj ·t

ρj
ij ·θij ·e

Ωij
, (2.5)

Ωij = x
′

ij · ξ + z
′

ij · bi, (2.6)

f(θi) =
3∏
j=1

1

β
αj
j · Γ(αj)

· θαj−1
ij · e−θij/βj , (2.7)

f(bi) =
1

(2π)q/2· | D |1/2
· e−

1
2
·b
′

i·D−1·bi . (2.8)

Eq. (2.5) represents the conditional outcome distribution; Eq. (2.7) repre-
sents the conjugate distribution; Eq. (2.8) represents the normal random effects
distribution. The Weibull parameters λj and ρj and the gamma parameters αj
and βj are allowed to vary with family member, but evidently they do not have
to. ξ are fixed parameters with corresponding covariates x

′
ij; bi are family-

specific parameters with corresponding covariates z
′
ij. D in Eq. (2.8) defines the

variance-covariance matrix of the random-effects vector bi. For identification
purposes, we enforce the constraint αj · βj ≡ 1 (Duchateau and Janssen, 2007)
upon the gamma parameters.

Special cases of the WGN model are the Weibull-gamma (WG–), the Weibull-
normal (W–N) and the standard Weibull (W—) model. Closed-forms expressions
exists for the marginal mean and variance (Molenberghs et al., 2015), making it
an attractive framework for mathematically examining relevant features such as
dispersion and correlation.

2.4 The Longevity of Life Span

Gavrilova et al. (1998a), Korpelainen (1999), Gudmundsson et al. (2000), and
Matthijs et al. (2002), have frequently been claimed that longevity or lifespan
(the full life length) has a familial component, passed on from parent to offspring.
We will focus on a specific aspect of longevity, in the context of three-member
clusters made up of father, mother, and first born child. Various interesting
questions surround this association: Is it sociological or biological, or both? Are
the patterns sex-specific? We emphasize the effect of parental longevity on
offspring mortality. While Matthijs et al. (2002) found that parental longevity
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had a relatively strong effect in women born in the early 19th century, and that
for the man-child the effect emerges only decades later, the precise mechanisms
underlying the association remain unknown. We aim to shed more light on
the sex and age-related patterns of the transmittance of longevity, while leaving
an in-depth discussion of the many possible components that may contribute
in the transmission of longevity of the first born child to others. Gavrilova and
Gavrilov (2001), Gavrilov and Gavrilova (2001) and Salaris et al. (2013) provided
a relevant discussion on familial transmission of human longevity.

We will examine whether differences arise in the influence of fathers and
mothers on the transmission of lifespan or longevity and whether the transmission
of mortality is related to the parents’ age-at-death. Oftentimes, the analysis of
longevity is limited to people over the age of 50, to eliminate phenotype variation
stemming from contagious diseases, accidents, war, and environmental maternal
effect during early childhood (Korpelainen, 1999). Causes of death such as
accidents and pregnancy-related diseases dominate the mortality pattern under
that age and may blur the picture. Genetic variability for survival is expected
to increase with age, following the evolutionary aging theory in general and
the mutation accumulation hypothesis in particular (Gavrilova et al., 1999). Of
course, there are situations where a different choice of age cutoff is warranted.
Gavrilova et al. (1998b), for example, motivate age 30 as a relevant cutoff.

2.5 Analysis of the Moerzeke Data

2.5.1 The Plackett-Dale Model

This is the first application of the PD model to data of a familial type. We address
whether the familial transmittance of survival to daughters is mainly maternally
or paternally transmitted (Matthijs et al., 2002) by way of the adjusted survival
time Tij (Section 2.3.1).

The model contains time-to-events for father, mother, and child, measured
by the total number of days that he/she lived. The (continuous) year-of-birth of
each family member and sex (0 for women, 1 for men) of the child are included
as covariates. Note that, of course, each family members outcome is affected
by a different year of birth, and a different gender-of-child effect is assumed for
the family members. While odd at first sight, such an effect is useful to check
whether gender of the child, e.g., as a result of testosterone production, has an
impact on, for example, the mothers lifespan. This leads to the next parameters:
ξYB1 year of birth of the mother, ξYB2 year of birth of the father, and ξYB3 year
of birth of the child. The sex of the child was included in all marginal Weibull
parts, where corresponding coefficients vary between members: ξG1 for mother,
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ξG2 for father, and ξG3 for child. When interest would be primarily focused on
the marginal distributions, one could consider more complex forms of marginal
regression like including non-linear effects of time. Because our main interest lies
with the association, and thanks to (near) orthogonality of the association and
marginal parts in the PD (Palmgren, 1989), we do not make the mean structure
more complex.

Table 2.1 displays the PL parameter and precision estimates. The logarithm of
the estimated association parameter between mother and child is 0.301 (95% con-
fidence interval [0.168; 0.434]), indicating a positive association between them.
For father-child the value comes out lower (−0.013; not statistically significant).
Values of Spearman’s and Kendall’s coefficients, together with their confidence
intervals, are presented in Table 2.2.

Table 2.1: Moerzeke data. Plackett–Dale model for father, mother, and child
(son or daughter). Pseudo-likelihood estimates (empirically corrected stan-
dard errors) of the survival times. The indices 1 refer to mother; 2 to father;
3 to child.

Effect Parameter Est. (s.e.)
Association (1,2) θ12 1.138 (0.160)
Association (1,3) θ13 1.351 (0.180)
Association (2,3) θ23 0.987 (0.137)
Sex effect on mother ξG1 -0.110 (0.069)
Sex effect on father ξG2 -0.077 (0.074)
Sex effect on child ξG3 -0.149 (0.056)
Year of birth of mother ξYB1 -1.076 (1.318)
Year of birth of father ξYB2 -0.880 (1.523)
Year of birth of child ξYB3 -3.137 (1.179)
Shape parameter mother ρ1 4.794 (0.168)
Shape parameter father ρ2 5.768 (0.194)
Shape parameter child ρ3 2.081 (0.126)
Scale parameter mother λ1 0.217 (0.493)
Scale parameter father λ2 0.184 (0.473)
Scale parameter child λ3 3.068 (1.028)
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Table 2.2: Moerzeke data. Plackett-Dale model for father, mother, and child
(son or daughter). Pseudo-likelihood estimates and inference for the asso-
ciation parameters θ, Kendall and Spearman coefficients (95% confidence
intervals). Pseudo-likelihood tests and theirs p-values. The indices 1 refer to
mother; 2 to father; 3 to child.

(i, j) log(θij) Kendall’s τij Spearman’s ρij
(1, 2) 0.129 (-0.012;0.270) 0.029 (0.013;0.044) 0.043 (-0.049;0.135)
(1, 3) 0.301 (0.168;0.434) 0.067 (0.052;0.081) 0.100 (0.014;0.186)
(2, 3) -0.013 (-0.152;0.125) -0.003 (-0.018;0.012) -0.004 (-0.095;0.086)

H0 Wald p-value G∗2 p-value S∗(m.b.) p-value S∗(e.c.) p-value
θ12 = 1 0.861 0.389 0.943 0.332 1.200 0.273 0.840 0.359
θ13 = 1 1.950 0.051 5.402 0.020 4.237 0.040 5.275 0.022
θ23 = 1 -0.096 0.923 0.010 0.922 0.015 0.904 0.009 0.925

Inferences are drawn using the tests described in Supplementary Materials S.2.
The null hypothesis of no association was tested in each case through the Wald,
score, and PL ratio tests and the results are displayed in Table 2.2. Note that if
the results are used for formal inferences, correction for multiple comparisons may
be considered. Similar conclusions are obtained. The Wald statistics give the
least significant p-values in most cases. The null hypotheses of no association
between father’s and mother’s survival times and father’s and child’s survival
times (i.e., θ12 = 1 and θ23 = 1, respectively) cannot be rejected by any of the
tests, but the situation is different for mother and child. We reject θ13 = 1.
The latter was already reflected in the fact that the 95% confidence intervals
for Kendall’s and Spearman’s coefficients contain the zero value for the first and
third hypotheses but not for the second one.

To enhance insight, the model is applied to different subsets. First, distinction
is made between sons and daughters. It is known that differences in mortality
between men and women are not necessarily the same for all age groups. Fig-
ure 2.2 displays the estimated unadjusted survival curves for sons and daughters
in three different groups (same selection as outlined above). The model is fitted
for sons and daughters separately, a simple but insightful way to find out whether
the association depends on the offspring’s sex.
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Figure 2.2: Moerzeke data. Survival curves for sons and daughters with a
cut-off point of 50 years. The horizontal axis refers to the (unadjusted) age
in years and the vertical axis is the probability of survival.

Table 2.3 displays sex-specific parameter estimates. No significant differences
are present for sons (Table 2.4), while for daughters there seems to be a stronger
association in case of mothers and daughters than for the rest of the association
parameters (θ13). It is of interest to see whether each of the pairwise associations
is significantly different between sons and daughters. This is not the case, using
Wald tests, which produce p values of 0.6915 for the mother-father, 0.2637 for
the mother-child, and 0.6558 for the father-child association.
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Table 2.3: Moerzeke data. Plackett-Dale model for father, mother, and child
(son and daughter separately). Pseudo-likelihood estimates (standard errors)
of the survival times. The indices 1 refer to mother; 2 to father; 3 to child.

Effect Parameter Sons Daughters
Association (1,2) θ12 0.979 (0.200) 1.351 (0.266)
Association (1,3) θ13 1.280 (0.256) 1.403 (0.247)
Association (2,3) θ23 0.936 (0.198) 1.046 (0.194)
Year of birth of mother ξYB1 -2.736 (1.719) 0.994 (2.068)
Year of birth of father ξYB2 0.494 (2.180) -2.360 (2.120)
Year of birth of child ξYB3 -4.267 (1.691) -2.271 (1.698)
Shape parameter mother ρ1 4.773 (0.242) 4.824 (0.234)
Shape parameter father ρ2 5.855 (0.268) 5.688 (0.282)
Shape parameter child ρ3 2.422 (0.241) 1.814 (0.132)
Scale parameter mother λ1 0.396 (0.645) 0.100 (0.769)
Scale parameter father λ2 0.119 (0.667) 0.295 (0.667)
Scale parameter child λ3 4.473 (1.236) 1.972 (1.717)

Table 2.4: Moerzeke data. Plackett-Dale model for father, mother, and child
(son and daughter separately). Pseudo-likelihood tests and theirs p-values for
the association parameters for models from Table 2.2. The indices 1 refer to
mother; 2 to father; 3 to child.

Offspring H0 Wald p-value G∗2 p-value S∗(m.b.) p-value S∗(e.c.) p-value
Sons θ12 = 1 -0.105 0.917 0.013 0.910 0.040 0.841 0.036 0.850

θ13 = 1 1.094 0.274 1.759 0.185 1.444 0.229 1.536 0.215
θ23 = 1 -0.324 0.746 0.113 0.737 0.486 0.486 0.478 0.489

Daughters θ12 = 1 1.317 0.188 2.477 0.116 2.557 0.110 2.286 0.131
θ13 = 1 1.631 0.103 3.590 0.058 2.740 0.098 3.734 0.053
θ23 = 1 0.234 0.815 0.058 0.810 0.086 0.769 0.057 0.811

Next, it is explored whether associations within families can also depend on
the age-at-death of the offspring. The PD model is fitted in six different groups:
Overlapping sets of offspring, reaching at least the age of 10, 20, 30, 40, 50,
and 60 years. This produces a decreasing number of observations, implying care
is needed with interpretation. A graphical summary of the log of the estimated
association values (and their 95 % confidence intervals) is given in Figure 2.3,
where all three log(θ) parameters are plotted for each group using as cut-off
point the age of mortality of the offspring.
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Figure 2.3: Moerzeke data. Log of association parameters θ12, θ13, and θ23

(from left to right) for offspring mortality group, separated for sons (top-left),
daughters (top-right) and all children (bottom-left). The horizontal axis refers
to the households where the offspring survived at least the given threshold.
The indices 1 refer to mother; 2 to father; 3 to child.

Each set of parameters represents, from left to right, log(θ12), log(θ13), and
log(θ23). The second log(θ) estimate in each group of three corresponds to the
mother-child relationship; this particular relationship typically exhibits a stronger
association than for the other pairs. The association between mother and daugh-
ter is not gradually becoming stronger when stepwise excluding those daughters
who have died at an early age. On the other hand, parameters for those who have
reached the age of 50 are generally lower. This finding is somewhat surprising in
the light of, for example, the findings of Korpelainen (1999). The same findings
are recovered for a set of French agricultural villages (Cournil et al., 2000). It
must be added that the visibility of the association with daughters at an early
age, is not against a social explanation of the transmittance of mortality that
focuses on the position of women in intra-household resource competition. It
should not be excluded that the weak position of women within some households
has effects at almost all ages.

In the second panel, associations between parents and daughters were plotted
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and there clearly is a different structure as opposed to the other two. Larger
values of log(θ13) are observed in almost every group. The latter result implies,
once more, higher associations between longevity of mothers and daughters.
Some care has to be taken, given that the groups overlap. The differences
observed in the length of the confidence intervals are due to the progressively
decreasing sample sizes.

Finally, the influence of the age-at-death of the parents will be explored.
Figure 2.4 offers a graphical display of their logarithms to ease interpretation of
these values. These confirm the previous findings that the association between
mothers and daughters is strongest and visible at all ages of the daughter. This
suggests that adult mortality of woman family members is connected in a very
general way, leading to associations in longevity between mothers and daughters,
irrespective of the age thresholds for the offspring. Interpretation should be done
cautiously due to relatively small sample sizes.
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Figure 2.4: Moerzeke data. Log of association parameters θ12, θ13, and θ23

(from left to right) for offspring mortality group, separated for sons (top) and
daughters (bottom) with parents dying older than 50 years. The horizontal
axis refers to households where the offspring survived at least the given thresh-
old with parents dying older than 50 years. The indices 1 refer to mother; 2
to father; 3 to child.
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2.5.2 The Weibull-Gamma-Normal Model

The data will be examined using the WGN model (Section 2.3.2). The same data
selection and covariates of Section 2.5.1 are considered to model the adjusted
time-to-event outcome Tij. Rather than following up on the discussion of familial
transmittance of longevity (Section 2.5.1), the CM framework is merely used here
to explore new aspects within the data.

The additional analyses result in three specific versions: (1) the W–N model,
(2) the WGN model, and (3) the marginalized WGN model. While subject-
specific interpretations ensue in the first and second case, population-averaged
interpretations are available for the third. The gamma parameters αj ≡ 1/βj ≡ α
are held constant, and a random-intercept is included to take between household-
variability into account (D ≡ σ2). ML estimation is performed (Molenberghs
et al., 2015). Estimates are gathered from the SAS procedure NLMIXED and
listed in Tables 2.5 and 2.6. The source code for fitting these models in NLMIXED
is available in Supplementary Material S.3.

Table 2.5: Moerzeke data. Weibull-gamma-normal model for father, mother,
and child (son or daughter). Maximum-likelihood estimates (standard errors)
of the survival times in (1) the Weibull (W—) model and (2) Weibull-normal
(W–N) model. The indices 1 refer to mother; 2 to father; 3 to child.

W— W–N
Effect Parameter Est. (s.e.) Est. (s.e.)
Sex effect on mother ξG1 −0.115 (0.094) −0.116 (0.094)
Sex effect on father ξG2 −0.078 (0.094) −0.078 (0.094)
Sex effect on child ξG3 −0.150 (0.094) −0.150 (0.094)
Year of birth of mother ξYB1 −1.124 (1.886) −0.895 (1.888)
Year of birth of father ξYB2 −0.895 (2.010) −1.112 (2.009)
Year of birth of child ξYB3 −3.174 (1.932) −3.173 (1.932)
Shape parameter mother ρ1 4.804 (0.187) 4.805 (0.187)
Shape parameter father ρ2 5.771 (0.218) 5.769 (0.218)
Shape parameter child ρ3 2.080 (0.087) 2.080 (0.087)
Scale parameter mother λ1 6.93E − 4 (2.36E − 3) 4.58E − 4 (1.56E − 3)
Scale parameter father λ2 5.90E − 5 (2.14E − 4) 8.80E − 5 (3.17E − 4)
Scale parameter child λ3 11.033 (38.875) 11.013 (38.803)
Std. dev. random effect σ −− −1.8E − 4 (0.054)
-2 log-likelihood 5391.7 5391.7
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Table 2.6: Moerzeke data. Weibull-gamma-normal model for father, mother,
and child (son or daughter). Maximum-likelihood estimates (standard errors)
of the survival times in (3) Weibull-gamma-normal (WGN) model, also re-
ferred as the combined model (CM), and (4) the marginalized WGN model.
The indices 1 refer to mother; 2 to father; 3 to child.

WGN Marg. WGN
Effect Parameter Est. (s.e.) Est. (s.e.)
Sex effect on mother ξG1 −0.116 (0.094) −0.117 (0.094)
Sex effect on father ξG2 −0.078 (0.094) −0.078 (0.094)
Sex effect on child ξG3 −0.150 (0.094) −0.150 (0.094)
Year of birth of mother ξYB1 −0.898 (1.891) −0.898 (1.891)
Year of birth of father ξYB2 −1.113 (2.013) −1.111 (2.013)
Year of birth of child ξYB3 −3.176 (1.935) −3.176 (1.935)
Shape parameter mother ρ1 4.809 (0.187) 4.809 (0.187)
Shape parameter father ρ2 5.775 (0.218) 5.775 (0.218)
Shape parameter child ρ3 2.081 (0.087) 2.081 (0.087)
Scale parameter mother λ1 4.58E − 4 (1.56E − 3) 4.58E − 4 (1.56E − 3)
Scale parameter father λ2 8.70E − 5 (3.15E − 4) 8.70E − 5 (3.14E − 4)
Scale parameter child λ3 11.073 (39.080) 11.080 (39.105)
Std. dev. random effect σ −1E − 4 (0.054) −1E − 5 (0.054)
Dispersion parameter α 459.02 (465.990) 459.02 (466.050)
-2 log-likelihood 5392.7 5392.7

From the fitted WGN model (Table 2.6), extra-dispersion parameter α is ob-
served to be high (459.02), while the estimated variance component σ goes to 0.
A similar result for σ is obtained in the W–N case in Table 2.5. To understand this
phenomenon, note that in PROC NLMIXED a partially marginalized likelihood
is specified: Analytically integrated over the gamma random effect but numeri-
cally over the normal random effect (Molenberghs et al., 2015), using adaptive
Gaussian quadrature. It forces the random effects variance to be non-negative.
This corresponds to a hierarchical viewpoint, whereas in a fully marginal one,
the variance component could be negative. This might be desirable in several
situations: Negative intraclass correlation, underdispersion, and others.

It is hypothesized that underdispersion is plausible. To motivate this, a de-
scriptive exploration is done on the observed vs. fitted variances of WGN for
longevity per household. Figure 2.5 (right) gives a graphical display of the ob-
served (scatterplot) and fitted variances (line plot) of longevity per household
consisting of the father, mother and first born child, resulting in approximately
64% (292 out of 457 – Figure 2.6) of the households with underdispersion.
Overall, an observed variance of 3.19 and a fitted variance of 3.27 is seen, cor-
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roborating the likely presence of underdispersion.

Figure 2.5: Moerzeke data. Mean (left) and variance (right) profiles for the
observed data and fitted Weibull-gamma-normal (WGN) model. The horizontal
and vertical axis refers to the household ID and lifespan, expressed in decades,
respectively.

Figure 2.6: Moerzeke data. Variance ratio between the observed and fitted
Weibull-gamma-normal (WGN) variance per household. The horizontal axis
refers to the ordered household ID’s, based on the increasing variance ratio.

While subject-specific interpretations are obtained from Eq. (2.5)–(2.8), population-
averaged interpretations are often preferred. Efendi et al. (2014) constructed a
so-called combined marginalized multilevel model (COMMM) version to this ef-
fect. Similar results were retrieved due to the estimated variance component σ2

of approximately 0 (Table 2.6).
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2.5.3 Accounting for Censoring

Matthijs et al. (2002) avoided censoring problems by limiting the analysis to a
subset of the population with complete data on lifetimes. Family members with
incomplete records were excluded from the analysis. However, information can
be extracted from incomplete records.

Two sources of information were considered to recover additional observa-
tions. First, the date of marriage, if present, can be used as a censored observa-
tion for lifetime of both parents. Second, the date of birth of the last child of
the family can be used to define censoring for mother’s survival time. By com-
bining these strategies, only 17 new families were incorporated and the analyses
repeated. This at the same time is a valuable form of sensitivity analysis.

Table 2.7 contains the results of all fits for the multivariate PD model. The
first column shows the results for sons and daughters together; the last two
columns show the results for each of the sexes separately. Molenberghs et al.
(2015) showed that fitting partially censored data for CMs can easily be done as
well.

Table 2.7: Moerzeke data. Plackett-Dale model for father, mother, and
child (all children; son and daughter separately). Pseudo-likelihood estimates
(standard errors) of the survival times. Censored observations are included.
The indices 1 refer to mother; 2 to father; 3 to child.

Effect Parameter All children Sons Daughters
Association (1,2) θ12 1.141 (0.161) 0.981 (0.200) 1.352 (0.266)
Association (1,3) θ13 1.332 (0.174) 1.305 (0.256) 1.346 (0.234)
Association (2,3) θ23 1.026 (0.141) 0.967 (0.205) 1.090 (0.200)
Sex effect on mother ξG1 -0.116 (0.069) - -
Sex effect on father ξG2 -0.083 (0.074) - -
Sex effect on child ξG3 -0.148 (0.055) - -
Year of birth of mother ξYB1 -0.719 (1.304) -2.157 (1.684) 1.114 (2.062)
Year of birth of father ξYB2 -0.794 (1.511) 0.315 (2.165) -1.990 (2.102)
Year of birth of child ξYB3 -3.114 (1.163) -3.888 (1.685) -2.596 (1.655)
Shape parameter mother ρ1 4.728 (0.162) 4.693 (0.234) 4.771 (0.225)
Shape parameter father ρ2 5.730 (0.191) 5.801 (0.266) 5.667 (0.274)
Shape parameter child ρ3 2.070 (0.121) 2.404 (0.230) 1.806 (0.128)
Scale parameter mother λ1 0.191 (0.495) 0.324 (0.643) 0.095 (0.775)
Scale parameter father λ2 0.180 (0.473) 0.125 (0.669) 0.264 (0.665)
Scale parameter child λ3 3.065 (1.020) 3.445 (1.241) 2.773 (1.683)
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The estimated association between child and mother remains the highest of
the three, even though a slight decrease is observed compared to the complete
case analysis. All associations are somewhat higher in the case of daughters
rather than sons, reflecting the same conclusions as before.

These techniques easily allow one to work with censored times. Whether or
not to include censored observations depends, of course, on the context.

2.6 Conclusion

A marginal PD model for the joint analysis of a number of, possibly censored,
survival outcomes is proposed. Parameter and precision estimation is performed
using PL. Appropriate PL-based test statistics were proposed. While the statis-
tical power of the Wald test is generally lower compared to PL and pseudo-score
tests, it is the most easy one to implement. The WGN model was considered,
a hierarchical model allowing for intra-cluster correlation as well as extra-model
dispersion.

The methods were applied to a study on longevity inheritance in a small
Flemish village (18th–20th century). The sample is relatively small (457 house-
holds). Importantly though, the main research interest lies with the estimation of
association. The PD model includes a (log) odds ratio to describe association,
which can be converted into Kendall’s τ and Spearman’s ρ. In addition, the
association is allowed to be different for each of the three pairs of association
(father↔mother; child↔mother; child↔father). Each of these associations can
be made dependent on covariates. The association between child and mother is
the highest of the three and also that all associations are somewhat higher in the
case of daughters rather than sons, consistent with earlier findings.

There is no obstacle in applying it to larger sets of triplets given that the
data retain their trivariate nature and the PL actually utilizes only bivariate joint
models. The computation time will increase quadratically with the number of
independent triplets.

The presence of underdispersion within the data was recorded, which is di-
rectly relevant to the variability structure of the Moerzeke data. It is a phe-
nomenon that is rarely observed in practice when analyzing clustered demo-
graphical data. This has been noticed from the WGN. The gamma parameter
was estimated to be high, with infinity corresponding to independence. A pos-
sible reason for this result is the occurrence of negative variance components,
which we further linked to the presence of underdispersion. By using descriptive
statistics to examine the within-household variability, we have seen that many
households encompass low within-household variability. These findings could be
linked to the geographical isolated nature of Moerzeke. While these discoveries
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have not been examined in detail yet within the Moerzeke study, more broadly,
within demographic clustered data, we conclude this chapter by stating that
further research possibilities open in the exploration of underdispersion within
hierarchical data structures. Because of limiting this research to familial associa-
tions, the precise mechanisms behind these associations remains open for future
investigation.
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Abstract

A Weibull-model-based approach is examined to handle under- and
overdispersed discrete data in a hierarhical framework. This methodology
was first introduced by Nakagawa and Osaki (1975), and later examined
for under- and overdispersion by Klakattawi et al. (2018) in the univariate
case. Extensions to hierarchical approaches with under- and overdispersion
were left unnoted, even though they can be obtained in a simple man-
ner. This is of particular interest when analyzing clustered/longitudinal
data structures, where the underlying correlation structure is often more
complex compared to cross-sectional studies.

A random effects extension of the Weibull-count model is proposed and
applied to two motivating case studies, originating from the clinical and
sociological research fields. A goodness-of-fit evaluation of the model is
provided through a comparison of some well-known count models, i.e., the
negative binomial, Conway-Maxwell-Poisson, and double Poisson models.

Empirical results show that the proposed extension flexibly fits the data,
more specifically, for heavy-tailed, zero-inflated, overdispersed and corre-
lated count data. Discrete left-skewed time-to-event data structures are
also flexibly modeled using the approach, with the ability to derive direct
interpretations on the median scale, provided the complementary log-log
link is used. Finally, a large simulated set of data is created to examine
other characteristics such as computational ease and orthogonality proper-
ties of the model, with the conclusion that the approach behaves best for
highly overdispersed cases.

3.1 Introduction

The analysis of count data has received considerable attention in the literature,
with practical applications in public health, and social and behavioral sciences.
Since the introduction of generalized linear models (GLMs) by Nelder and Wed-
derburn (1972), a GLM based on the Poisson distribution, a well-known mem-
ber of the exponential family (EF), is a commonly applied statistical model for
count data analysis. In spite of its many advantages, e.g., the ability of fitting
skewed non-negative data, the model possesses a too restricted mean-variance
relationship (equidispersion), a characteristic that is often violated in the data.
In particular, two situations can occur: (1) The variability in the data is larger
than the theoretical variance implied by the model (overdispersion), and (2) the
variability in the data is smaller than the theoretical variance (underdispersion).
For these and other reasons, e.g., zero-inflation (Iddi and Molenberghs, 2013)
and heavy-tailed profiles (Zhu and Joe, 2009), many alternative and extended
models have been proposed in the literature.
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These models can often be classified as exponential dispersion models (EDMs),
introduced by Jørgensen (1987), which include the GLM families as a special
case. More specifically, EDMs increase the range of univariate/multivariate vari-
ance functions for which generalized linear type models exist. Kokonendji et al.
(2004), for example, investigated two classes of EDMs for count data that is
overdispersed compared to the Poisson distribution, i.e., the Poisson-Tweedie
and Hinde-Demétrio classes. Efron (1986), on the other hand, proposed a differ-
ent class of regression families, by introducing a second parameter in the EF that
controls the dispersion independently of the mean while still carrying out the usual
regression analysis in a GLM context. These are the so-called double-EFs because
they enjoy EF properties simultaneously for the mean and dispersion parameters.
A popular member is the double Poisson (DP) model (Appendix S.4.4). A gen-
eral overview of some popular models is given in Supplementary Material S.4 for
subsequent comparison (Section 3.4).

While most of these models find their origin back in the Poisson GLM frame-
work, alternative approaches for modeling count data based on time-to-event
distributions have recently been developed. These approaches are mainly built
upon the direct relationship between the Poisson and exponential distributions
(Conway and Maxwell, 1962). Zeviani et al. (2014), for example, focused on
a discrete version of the gamma distribution to model count data by following
the two-step approach of Winkelmann (1995): (1) Define the Poisson process
as a sequence of i.i.d. exponentially distributed waiting times (Cox, 1962); and
(2) replace the exponential distribution with a less restrictive (extended) non-
negative distribution such as the gamma distribution. For the Weibull distri-
bution, Morais and Barreto-Souza (2011) constructed count versions, i.e., the
generalized Weibull power series (GWPS) class of distributions. Another, simple
discrete approach based on the Weibull distribution, is that of Nakagawa and Os-
aki (1975). In particular, Klakattawi et al. (2018) recently pointed out that the
corresponding regression model can model over- and underdispersed count data.
Moreover, they showed that the model is able to adequately fit highly skewed
count data with excessive zeros, without the need for introducing zero-inflated or
hurdle components, in contrast to other existing methods, e.g., the zero-inflated
Conway-Maxwell-Poisson (ZICOM) model (Sellers and Raim, 2016). A further
generalization of this approach was introduced by Nekoukhou and Bidram (2015),
where the exponentiated discrete Weibull (EDW) distribution is defined.

Apart from the presence of extra-dispersion, extended structures such as lon-
gitudinally collected data, where subjects/patients are repeatedly measured over
time, and hierarchical structures, originating from hierarchical designs such as
multi-center trials, can also be present. For the GLM framework, the generalized
linear mixed model (GLMM), discussed by Engel and Keen (1994), Breslow and
Clayton (1993), and Wolfinger and O’Connell (1993), has been suggested, and
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became a popular framework for taking into account hierarchical data structures.
In these models, random effects are introduced to capture the association struc-
ture and to some extent dispersion. Molenberghs et al. (2007) extended this
approach by introducing the so-called combined modeling (CM) framework, that
was mainly developed to encompass both aspects, (1) overdispersion and (2)
hierarchical/longitudinal structures, simultaneously, by adding an extra random
effect into the GLMM framework.

In this chapter, we examine the existing (univariate) discrete Weibull(DW)-
based approach of Nakagawa and Osaki (1975), and extend it with random
effects to accommodate more complex data structures. This approach assumes
that extra dispersion is captured in the pre-specified distribution, and differs from
that in Molenberghs et al. (2007) where the extra dispersion is captured by an
additional random effect. In addition, various settings (heavy-tails, zero-inflation)
in combination with dispersion and correlation are examined, and compared with
other well-known count models (Supplementary Materials S.4). Conclusions are
supported with some characteristics of the model.

The remainder of this chapter is organized as follows. In Section 3.2, two
motivating case studies are presented, stemming from patients with epileptic
seizures, and historic data on household members from a Belgian town. An
overview of the DW version of Nakagawa and Osaki (1975) is sketched in Sec-
tion 3.3, alongside its extended version and characteristics. Section 3.4 is devoted
to the analysis of the case studies, where a comparison is made between this ap-
proach and other count models (Appendix S.4). A simulation study is reported in
Section 3.5 to investigate other characteristics of the framework, and concluding
remarks are given in Section 3.6.

3.2 Case Studies

3.2.1 The Epilepsy Data

The epilepsy dataset comes from a randomized, double-blinded, parallel group
multi-center study aimed at comparing placebo with a new anti-epileptic drug
(AED), in combination with one or two other AEDs. In total, 45 patients were
assigned to the placebo group, and 44 to the active (new) treatment group.
Patients were then followed for several weeks – during which the number of
epileptic seizures experienced in the last week – were counted, i.e., since the last
time the outcome was measured. The main research question is whether or not
the new treatment reduces the number of epileptic seizures. A full description
of the epilepsy dataset is provided in Faught et al. (1996). Figure 3.1 (top)
displays the individual profiles with corresponding mean and median profiles of
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the seizure counts for every study week, and Figure 3.1 (bottom) shows the
observed mean and variance of the seizure counts per patient ID, categorized for
both treatment groups. The figure shows highly variable longitudinal count data
with the presence of extreme values, zero-inflation, and very few observations
available at some of the time-points, especially past week 20.
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Figure 3.1: Epilepsy data (Faught et al., 1996). Subject specific profiles (grey)
with corresponding average (solid black) and median (dashed black) profiles
of the number of epileptic attacks for every visit (top), and observed mean
and variance of the seizure counts per patient ID (bottom), categorized for
both treatments.

3.2.2 The Moerzeke Data

The second dataset comes from a demographic, historical database of Moerzeke,
a small village in the center of Flanders (the Dutch speaking part of Belgium)
within the province of East Flanders. Information in the database is drawn from
church and civil registers, which can be taken as high quality and appropriate for
population studies, and includes all individuals who were born, married, or died
in Moerzeke.

In this study, a sample of 457 families was taken - by selecting all fathers
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born between 1750 and 1830, and then forming a family by including also their
first born children and the children’s mothers. To avoid overlap, children already
selected are not included again, as either father or mother of new families. For
the group under study, the mean age at death for those who were born and
deceased in Moerzeke was 71.9 years for men and 71.7 for women, respectively.
The main interest lies in the exploration of different social and/or household char-
acteristics (e.g., gender of first born child) on the (discrete) life expectancy of
family members. Figure 3.2 (top) shows the household profiles with correspond-
ing average and median profiles of the (discrete) life expectancy, and Figure 3.2
(bottom) shows the observed mean and variance of the (discrete) life expectancy
per household ID, categorized for the gender of the first born child. On the av-
erage and median scales, a higher life expectancy of first born male children is
observed compared to first born female children.
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Figure 3.2: Moerzeke data. Household specific profiles (grey) with correspond-
ing average (solid black) and median (dashed black) profiles of the (discrete)
life expectancy (rescaled) for every household member (top), and observed
mean and variance of the (discrete) life expectancy (rescaled) per household
ID (bottom), categorized for the gender of the first born child. The indices
F, M, and C refer to father, mother, and first born child, respectively.
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3.3 The Weibull-count Approach

Due to the reproductive property of the gamma distribution, i.e., the sum of
two gamma distributed random variables again follows a gamma distribution,
Winkelmann (1995) pointed out that the gamma distribution is a useful choice
for his two-step approach. Unfortunately, this reproductive property does not
hold for the Weibull distribution. As an alternative, the discrete approach of
Nakagawa and Osaki (1975), which is here referred to as the DW model, can be
used instead and gives a simple and adaptable alternative for the Weibull case. In
what follows, we will give a general overview of the DW approach of Nakagawa
and Osaki (1975).

Let Yi, i = 1, . . . , n, be (type 1) DW distributed (Nakagawa and Osaki,
1975) with parameters 0 < q < 1 and ρ > 0. The probability mass function,
cumulative distribution function, and hazard function are given by

P (Yi = yi) = qy
ρ
i − q(yi+1)ρ , F (yi) = 1− q(yi+1)ρ ,

h(yi) = qy
ρ
i−(yi+1)ρ − 1,

(3.1)

respectively. Special cases result from this. When ρ = 1 and q = 1 − p, the
geometric distribution follows. Particularly, when ρ = 1 and q = e−λ, the discrete
exponential (DE) distribution results (Sato et al., 1999), which is overdispersed
relative to the standard Poisson distribution (Supplementary Material S.5). In
addition, when ρ = 2 and q = θ, the discrete Rayleigh (DR) distribution of Roy
(2004) obtains. If ρ → +∞, the DW approaches a Bernoulli distribution with
probability q. When q is small, an excessive zero case occurs (Klakattawi et al.,
2018).

The mean and variance of the DW approach are given by

E(Yi) = µ =
+∞∑
n=1

qn
ρ

, (3.2)

Var(Yi) = 2 ·
+∞∑
n=1

n · qnρ − µ− µ2. (3.3)

It can easily be shown that both of the infinite series in Eq. (3.2)–(3.3) converge
(Supplementary Material S.6). Based on the integral test, general approximations
can be found consisting of incomplete gamma functions, e.g., Englehardt and Li
(2011). Closed-form expressions for lower and upper boundaries for Eq. (3.2)–
(3.3), based on the integral test, can be found in Supplementary Material S.6.

To explore the characteristics of the DW model, we compute indexes for
dispersion (DI), zero-inflation (ZI) and heavy-tail (HT), introduced by Puig and
Valero (2006), which are respectively given by
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DI =
Var(Yi)

E(Yi)
, ZI = 1 +

logP (Yi = 0)

E(Yi)
,

HT =
P (Yi = yi + 1)

P (Yi = yi)
, for yi →∞.

(3.4)

These indices are defined in relation to the Poisson distribution. Thus, the
dispersion index indicates over-, under- and equidispersion for, respectively, DI >
1, DI < 1 and DI = 1. The zero-inflation index indicates zero-inflation for
ZI > 0, zero-deflation for ZI < 0 and no excess of zeros for ZI = 0. Finally, the
heavy-tail index indicates a heavy-tail distribution for HT → 1 when yi → ∞.
Figure 3.3 shows that the DW framework is able to model highly overdispersed,
zero-inflated and heavy-tailed data. The approach also allows the fit of low
overdispersed, zero-deflated data, and even some amount of underdispersion.
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Figure 3.3: Characteristic indexes of the discrete Weibull distribution related
to the Poisson distribution. Dashed, dot dashed and dotted lines represent the
Poisson, discrete exponential and discrete Rayleigh distribution, respectively.
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In a regression framework, Klakattawi et al. (2018) assumed that the response
Yi has a DW distribution, where a subject-specific parameter qi is related to a
p-dimensional vector of covariates xi for ith observation through the comple-
mentary log-log link function

ln[−ln(qi)] = x
′

i · β ⇔ qi = e−ex
′
i·β(= e−λi) (3.5)

Note that the complementary log-log link for qi in Eq. (3.5) corresponds to a
log link for λi. In addition, β in Eq. (3.5) represents the associated regression
parameter vector, which can directly be interpreted in terms of the logarithm
of the (closed-form) median. This is of particular interest when modeling, for
example, highly skewed data, which often occurs in count data. Particular, by
splitting the regression parameters β into {β0} ∪ {βl | l = 1, . . . , p}, it can
easily be shown, thanks to the use of the complementary log-log link function
(Klakattawi et al., 2018), that {ln[ln(2)] − β0}/ρ is related to the conditional
median when all covariates are set to zero, whereas −βl/ρ (l = 1, . . . , p) can be
related to the change in the median of the response corresponding to a one unit
change of xli, keeping all other covariates constant.

In terms of estimation procedures, Klakattawi et al. (2018) and Kulasekera
(1994) used maximum likelihood (ML) for parameter estimation, while Haseli-
mashhadi et al. (2018) proposed a Bayesian approach for estimating the param-
eters.

3.3.1 The Extended Hierarchical Weibull-count Approach

If the discrete data are hierarchically structured, with Yij denoting the jth discrete
outcome measured for cluster/subject i, i = 1, . . . , N , j = 1, . . . , ni, univariate
models are often not appropriate to take into account the underlying correlation
structure of the data. Therefore, mixed-effects models are often proposed where,
in addition to fixed effects, random effects are added to the model to allow
for the correlation structure of the data. These approaches have been studied
extensively in the GLM framework, e.g., linear mixed model (LMM) and GLMM
(Molenberghs and Verbeke, 2005), while little research has focussed on dispersion
models outside of this framework. In our context, where the focus is on the
DW approach, a dispersion model extension with random effects can simply be
achieved as follows:

ln[−ln(qij)] = x
′

ij · β + z
′

ij · bi, (3.6)

where zij represents a q-dimensional vector of known covariate values corre-
sponding to the q-dimensional random effects vector bi following a multivariate
normal distribution with mean vector 0 and variance-covariance matrix D.
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In the following, we will analyze the epilepsy and Moerzeke datasets, intro-
duced in Section 3.2. ML principles are used to obtain parameter estimates. The
SAS procedure NLMIXED is used for the computations (Appendix S.7).

3.4 Analysis of the Case Studies

3.4.1 The Epilepsy Data

The epilepsy data of Section 3.2.1 will be analyzed with the DW and its nested
DE model (Section 3.3), and compared with some conventional models from
Supplementary Materials S.4, i.e., the classical Poisson log-linear (P), negative
binomial (NB), Conway-Maxwell-Poisson (COM) and DP models. Previous work
on this dataset was reported by Molenberghs and Verbeke (2005) and Molen-
berghs et al. (2007) in the context of generalized estimating equations (GEE;
Liang and Zeger, 1986) and the CM framework, respectively.

Let Yij be the number of epileptic seizures that patient i experiences during
week j of the follow-up period, and let tij be the time-point at which outcome
Yij has been measured, i.e., tij = 1, 2, . . . , until at most 27. The following
specific choice is made for the linear predictor:

ηij = β0 + bi + β
′

0 · Ti + (β1 + β
′

1 · Ti) · tij, (3.7)

where Ti = 1 if patient i receives the treatment, and 0 for placebo. Here, β
′
0

and β
′
1 represent differences between treatment and placebo in terms of intercept

and slope, respectively. The link functions are ηij = exp(λij) for the P, DE, NB,
COM and DP models, and ηij = ln[−ln(qij)] for the DW model. The random
intercept bi is assumed to be normally distributed with mean 0 and variance
σ2, reflecting the between-patient variability within the data. ML estimates and
corresponding standard errors of the parameters are reported in Table 3.1 (for
the univariate case, i.e., without the subject random effect) and Table 3.2 (for
the clustered case, i.e., with the subject random effect).

In the univariate case, i.e., where clustering is ignored (Table 3.1), very large
improvements is observed in the DE, NB, DP and DW models, in terms of the
likelihood, relative to the classical P model. This, of course, is to be expected
since the P model assumes equidispersion while the parameters α, φ and ρ (see
Appendix S.4 for details) provide significant evidence of overdispersion. Fur-
thermore, when a comparison is made between the DW and the conventional
models, e.g., NB and DP, w.r.t. the Poisson model, we could consider the DW
model as the better one in terms of log-likelihood. Indeed, similar to the NB
approach (Figure S.8.1), the DW model is able to capture highly overdispersed,
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zero-inflated and heavy-tailed data (Figure 3.3), characteristics that are definitely
present within the epilepsy dataset.

Table 3.1: Epilepsy dataset. Parameter estimates (standard errors) for the
(1) Poisson (P), (2) discrete exponential (DE), (3) negative binomial (NB),
(4) Conway-Maxwell-Poisson (COM), (5) double Poisson (DP), and (6) the
discrete Weibull (DW) model.

P DE NB
Effect Par. Est. (s.e.) Est. (s.e.) Est. (s.e.)
Intercept placebo β0 1.2662 (0.0424) 1.2601 (0.0864) 1.2594 (0.1119)
Difference in intercepts β

′
0 0.1869 (0.0571) 0.2115 (0.1202) 0.2156 (0.1564)

Slope placebo β1 −0.0134 (0.0043) −0.0126 (0.0086) −0.0126 (0.0111)
Difference in slopes β

′
1 −0.0195 (0.0058) −0.0222 (0.0116) −0.0227 (0.0150)

Ratio of slopes 1 +
β
′
1

β1
2.4576 (0.8480) 2.7586 (1.9721) 2.8081 (2.6066)

α −− −− 1.8961 (0.0918)
τ −− −− −−
φ −− −− −−
ρ −− −− −−

−2 loglik 11590.0 6502.5 6326.1
AIC 11598.0 6510.5 6336.1

COM DP DW
Effect Par. Est. (s.e.) Est. (s.e.) Est. (s.e.)
Intercept placebo β0 −0.5054 (0.0189) 1.2662 (0.1054) 0.7341 (0.1002)
Difference in intercepts β

′
0 0.0131 (0.0144) 0.1869 (0.1421) 0.0936 (0.1307)

Slope placebo β1 −0.0011 (0.0012) −0.0134 (0.0108) −0.0174 (0.0095)
Difference in slopes β

′
1 −0.0017 (0.0017) −0.0195 (0.0144) −0.0143 (0.0127)

Ratio of slopes 1 +
β
′
1

β1
2.5663 (3.1297) 2.4576 (2.1093) 1.8189 (1.1027)

α −− −− −−
τ −0.1188 (0.0051) −− −−
φ −− 0.1616 (0.0061) −−
ρ −− −− 0.7383 (0.0172)

−2 loglik 6256.2 6815.6 6291.3
AIC 6266.2 6825.6 6301.3

Furthermore, we should mention that ‘illegal’ estimates were obtained for the
COM model, implying that no valid conclusions can be made from it. Indeed,
when looking at the fitted dispersion parameter τ , a negative estimate (−0.1188)
is observed which is outside the parameter space (Appendix S.4.3). This, of
course, can easily be explained by the fact that the COM distribution limits itself
in flexibility towards underdispersed data with narrow flexibility to zero-inflation
(Figure S.8.2). Bar charts of the fitted univariate models are given in Figure 3.4.
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Figure 3.4: Epilepsy data. Bar charts of fitted univariate models.

For the clustered case, i.e., where a subject-specific random-intercept is added
to account for correlation (Table 3.2), we find that the DWN is considerably bet-
ter in terms of likelihood. Moreover, point and precision estimates of such key
parameters as the slope difference and the slope ratio are strongly affected when
a random effect is added to the models. This remark was also made by Molen-
berghs et al. (2010), who noted an impact on hypothesis testing. Surprisingly, a
valid interpretation on the extended COM approach can now be given, while this
was not possible in the univariate case. To explain this phenomenon, attention
should be directed towards the limited flexibility of COM in terms of overdisper-
sion and the multiplicity effect of the random effects. In particular, a limited
number of highly overdispersed regions can be modeled with the COM approach
(Figure S.8.2). By adding a random effect to the model, extra flexibility has been
given towards capturing overdispersed regions. Indeed, since random effects are
mainly used to capture the underlying correlation structure of the data, they are
also able to seize a certain amount of dispersion. Therefore, more flexibility has
been gained with the inclusion of random effects towards the modeling of overdis-
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persed data. In addition, a much lower parameter estimate for σ was obtained
for the Conway-Maxwell-Poisson-normal (COMN) case, compared to all other
models. This directly results from the main disadvantage of the COM regression
model, i.e., its location parameter does not correspond to the expectation, which
complicates the interpretation of regression models towards the mean specified
using this distribution (Sellers and Shmueli, 2010).

Table 3.2: Epilepsy dataset. Parameter estimates (standard errors) for the
(1) Poisson-normal (PN), (2) discrete exponential-normal (DEN), (3) com-
bined model (CM), (4) Conway-Maxwell-Poisson-normal (COMN), (5) dou-
ble Poisson-normal (DPN), and (6) the discrete Weibull-normal (DWN)
model.

PN DEN CM
Effect Par. Est. (s.e.) Est. (s.e.) Est. (s.e.)
Intercept placebo β0 0.8177 (0.1677) 0.9443 (0.1843) 0.9112 (0.1755)
Difference in intercepts β

′
0 −0.1705 (0.2387) −0.2670 (0.2620) −0.2556 (0.2500)

Slope placebo β1 −0.0143 (0.0044) −0.0271 (0.0101) −0.0248 (0.0077)
Difference in slopes β

′
1 0.0023 (0.0062) 0.0145 (0.0140) 0.0130 (0.0107)

Ratio of slopes 1 +
β
′
1

β1
0.8398 (0.3979) 0.4663 (0.3953) 0.4751 (0.3345)

Std. dev. random effect σ 1.0755 (0.0857) 1.0436 (0.0888) 1.0626 (0.0871)
α −− −− 0.4059 (0.0348)
τ −− −− −−
φ −− −− −−
ρ −− −− −−

−2 loglik 6271.9 5543.9 5417.0
AIC 6281.9 5553.9 5429.0

COMN DPN DWN
Effect Par. Est. (s.e.) Est. (s.e.) Est. (s.e.)
Intercept placebo β0 −0.2384 (0.0779) 0.8314 (0.1721) 1.4319 (0.2183)
Difference in intercepts β

′
0 −0.0947 (0.1042) −0.1582 (0.2451) −0.2970 (0.3005)

Slope placebo β1 −0.0040 (0.0023) −0.0146 (0.0067) −0.0297 (0.0098)
Difference in slopes β

′
1 0.0005 (0.0032) 0.0018 (0.0093) 0.0180 (0.0135)

Ratio of slopes 1 +
β
′
1

β1
0.8646 (0.7451) 0.8778 (0.5980) 0.3947 (0.3382)

Std. dev. random effect σ 0.4475 (0.0433) 1.0458 (0.0875) 1.2658 (0.1063)
α −− −− −−
τ 0.1563 (0.0196) −− −−
φ −− 0.4355 (0.0169) −−
ρ −− −− 1.3074 (0.0340)

−2 loglik 5473.8 5652.2 5451.1
AIC 5485.8 5664.2 5463.1
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Even though the CM is a more viable candidate in terms of likelihood (related
to the P model), one should be aware of the restricted mean scale interpretation
in this framework, especially when dealing with skewed data. In this setting,
right skewed data (Figure 3.1) is observed, making the inferences less attractive
from an interpretational point of view (similar to the DPN approach). The DW
model avoids this problem by allowing inferences directly on the median scale
(Section 3.3), making the approach more interesting here.

Finally, we expand our analysis with random slopes in the DWN model, i.e.,
considering two random effects instead of a single one to reflect the between-
and within-patient variability of the data. The linear predictor becomes:

ηij = β0 + b1i + β
′

0 · Ti + (β1 + β
′

1 · Ti + b2i) · tij, (3.8)

where the random effects vector bi = (b1i, b2i)
′

is assumed to be multivariate
normally distributed with mean vector 0 and variance-covariance matrix

D =

(
σ2

1 σ12

σ12 σ2
2

)
. (3.9)

A comparison with the random-intercept model will be made in two ways,
i.e., (1) a random-slopes model with uncorrelated random effects (σ12 = 0; IND)
and (2) a random-slopes model with correlated random effects (σ12 6= 0; UN).
ML estimates and corresponding standard errors of the parameters are reported
in Table 3.3.

Table 3.3: Epilepsy dataset. Parameter estimates (standard errors) for
the discrete Weibull-normal (DWN) model with (1) random-intercept, (2)
random-slope with uncorrelated random effects (IND), and (3) random-slope
with correlated random effects (UN).

Random-intercept Random-slope (IND) Random-slope (UN)

Effect Par. Est. (s.e.) Est. (s.e.) Est. (s.e.)
Intercept placebo β0 1.4319 (0.2183) 1.4973 (0.2183) 1.4947 (0.2287)
Difference in intercepts β

′
0 −0.2970 (0.3005) −0.2909 (0.2996) −0.2984 (0.3150)

Slope placebo β1 −0.0297 (0.0098) −0.0339 (0.0120) −0.0327 (0.0126)
Difference in slopes β

′
1 0.0180 (0.0135) 0.0169 (0.0168) 0.0167 (0.0176)

Ratio of slopes 1 +
β
′
1

β1
0.3947 (0.3382) 0.5016 (0.3920) 0.4884 (0.4219)

Std. dev. random-intercept σ1 1.2658 (0.1063) 1.2553 (0.1114) 1.3333 (0.1302)
Std. dev. random-slope σ2 −− (−−) 0.0417 (0.0092) 0.0474 (0.0099)
Cov. between random-effects σ12 −− (−−) −− (−−) −0.0177 (0.0142)

ρ 1.3074 (0.0340) 1.3393 (0.0362) 1.3463 (0.0366)
−2 loglik 5451.1 5439.6 5437.7
AIC 5463.1 5453.6 5453.7
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A significant improvement in likelihood is observed when adding a random-
slope to the model (likelihood ratio test p = 0.0007). However, there are no
qualitative changes in the results of hypothesis testing for the main effects of
interest. Furthermore, by comparing the independent random effects (IND) with
correlated random effects (UN), no significant improvements were obtained (like-
lihood ratio test p = 0.1692). This extension at the same time illustrates the
ease with which more than one random effect can be included.

3.4.2 The Moerzeke Data

While previous work on the Moerzeke data was provided by Matthijs et al. (2002)
for the examination of historical mortality in terms of sociological and biological
components, there has been no consideration of dispersion aspects. To this end,
the DW and its nested DE models are considered in the analysis of the Moerzeke
dataset (Section 3.2.2) and compared with the count models from Appendix S.4.

Let Yij represent the (discrete) life expectancy of the mother, father, and first
born child (j = 1, 2, 3) in household i = 1, . . . , 457. We assume the following
predictor:

ηij = β0 ·ICij+β
′

0 ·IMij+β
′′

0 ·IFij+bi+(β1 ·ICij+β
′

1 ·IMij+β
′′

1 ·IFij)·Gi, (3.10)

where ICij, IMij and IFij are dummy variables for first born child, mother and
father, respectively, and Gi is the binary indicator for the gender of the first
born child, i.e., 1 for male and 0 for female. Similar to the epilepsy analysis, the
link functions are ηij = exp(λij) for the P, DE, NB, COM and DP models, and
ηij = ln[−ln(qij)] for the DW model. The random intercept bi is used to capture
between-household variability, which here is assumed normally distributed with
mean 0 and variance σ2. ML estimates and corresponding standard errors of the
parameters are reported in Table 3.4 (for the univariate case without the random
effect) and Table 3.5 (for the clustered case, including the random effect).

In the univariate case (Table 3.4), the COM, DP and DW models signifi-
cantly improved the model fit, compared to the classical Poisson model, while,
in terms of likelihood, a worse fit is observed for the DE case. Indeed, when con-
sidering the dispersion parameters (τ , φ and ρ), we observe the clear presence
of underdispersion within the data. While the DW, COM and DP models are
able to capture this phenomenon (Figures 3.3, Supplementary Material S.8.2,
and Supplementary Material S.8.3, respectively), this is not the case for the DE
(Supplementary Material S.5) and Poisson models. Therefore, it is fair to say
that the DE model is completely wrong, not just in terms of underdispersion,
but also in the fact that it fails to capture the unimodal shape, as expected from
a geometric distribution. The underdispersion result can be explained by the
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Table 3.4: Moerzeke dataset. Parameter estimates (standard errors) for the
(1) Poisson (P), (2) discrete exponential (DE), (3) Conway-Maxwell-Poisson
(COM), (4) double Poisson (DP), and (5) discrete Weibull (DW) model.

P DE COM
Effect Par. Est. (s.e.) Est. (s.e.) Est. (s.e.)
Intercept first born child β0 1.7068 (0.0288) 1.7068 (0.0735) 3.0527 (0.1294)
Intercept father β

′
0 1.8473 (0.0268) 1.8473 (0.0727) 3.2891 (0.1373)

Intercept mother β
′′
0 1.8847 (0.0263) 1.8847 (0.0725) 3.3522 (0.1395)

Gender effect on first born child β1 0.1009 (0.0390) 0.1009 (0.1014) 0.1697 (0.0509)
Gender effect on father β

′
1 0.0187 (0.0370) 0.0187 (0.1007) 0.0316 (0.0481)

Gender effect on mother β
′′
1 0.0145 (0.0364) 0.0145 (0.1005) 0.0247 (0.0473)
τ −− −− 1.7484 (0.0690)
φ −− −− −−
ρ −− −− −−

−2 loglik 5834.3 7985.1 5669.3
AIC 5846.3 7997.1 5683.3

DP DW
Effect Par. Est. (s.e.) Est. (s.e.)
Intercept first born child β0 1.7068 (0.0225) 8.9228 (0.2301)
Intercept father β

′
0 1.8473 (0.0210) 9.0796 (0.2293)

Intercept mother β
′′
0 1.8847 (0.0206) 9.1660 (0.2301)

Gender effect on first born child β1 0.1009 (0.0305) 0.1699 (0.0957)
Gender effect on father β

′
1 0.0187 (0.0290) 0.0831 (0.0955)

Gender effect on mother β
′′
1 0.0145 (0.0285) 0.0350 (0.0954)
τ −− −−
φ 1.6333 (0.0624) −−
ρ −− 4.5377 (0.1055)

−2 loglik 5693.3 5512.3
AIC 5707.3 5526.3

fact that Moerzeke has characteristics of a geographically isolated area as it is
almost completely surrounded by a meander in the river Scheldt and by the river
Durme. This was an important geographical limitation within the time bracket
at which data were collected, and led to more genetic homogeneity than in the
typical town. We observe that the DW model indicates the best fit, relative
to the COM and DP models, in terms of likelihood compared to the Poisson
model. A possible reason for this result is the presence of left-skewed discrete
time-to-event data, which can flexibly be modeled with the DW approach due
to the underlying Weibull connection. Bar charts of the fitted univariate models
are given in Figure 3.5.
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Figure 3.5: Moerzeke data. Bar charts of fitted univariate models.

In the clustered case (Table 3.5), noteworthy results were obtained for the
estimated variance component σ2. In all clustered models, the estimated compo-
nent is very close to 0, leaving the standard errors estimates unchanged relative
to the univariate cases. This phenomenon, while strange at first sight, is reason-
ably well understood in the literature. More specifically, partial marginalization is
used here, in agreement with Molenberghs et al. (2010), where adaptive Gaussian
quadrature principles are used to approximate the marginal likelihood obtained
from integrating over the normal random effects. This automatically adopts a
hierarchical perspective, implying the restriction that no negative estimates of
σ2 can be achieved, even though this could be present for several reasons (e.g.,
negative intraclass correlation, underdispersion, etc.). Molenberghs and Verbeke
(2011) and Verbeke and Molenberghs (2003), for example, discussed this phe-
nomenon in the context of LMMs. Pryseley et al. (2011) extended this discussion
to non-Gaussian outcomes, while Oliveira et al. (2017) illustrated how such neg-
ative variance components play a natural role in modeling both the correlation
between repeated measures on the same experimental unit and over- or under-
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dispersion from a CM perspective. While a zero variance component could in
principle also point to the absence of correlation, this is not something one would
expect in view of these data.

Table 3.5: Moerzeke dataset. Parameter estimates (standard errors)
for the (1) Poisson-normal (PN), (2) discrete exponential-normal (DEN),
(3) Conway-Maxwell-Poisson-normal (COMN), (4) double Poisson-normal
(DPN), and (5) discrete Weibull-normal (DWN) model.

PN DEN COMN
Effect Par. Est. (s.e.) Est. (s.e.) Est. (s.e.)
Intercept first born child β0 1.7068 (0.0288) 1.7068 (0.0735) 3.0529 (0.1294)
Intercept father β

′
0 1.8473 (0.0268) 1.8472 (0.0727) 3.2895 (0.1373)

Intercept mother β
′′
0 1.8847 (0.0263) 1.8847 (0.0727) 3.3527 (0.1395)

Gender effect on first born child β1 0.1009 (0.0390) 0.1009 (0.1014) 0.1698 (0.0509)
Gender effect on father β

′
1 0.0187 (0.0370) 0.0187 (0.1007) 0.0317 (0.0481)

Gender effect on mother β
′′
1 0.0145 (0.0364) 0.0145 (0.1005) 0.0245 (0.0473)

Std. dev. random effect σ 1.16E − 4 (0.0119) 1.68E − 4 (0.0215) 7.72E − 4 (0.1039)
τ −− −− 1.7486 (0.0690)
φ −− −− −−
ρ −− −− −−

−2 loglik 5834.3 7985.1 5669.3
AIC 5848.3 7999.1 5685.3

DPN DWN
Effect Par. Est. (s.e.) Est. (s.e.)
Intercept first born child β0 1.7068 (0.0225) 8.9228 (0.2301)
Intercept father β

′
0 1.8473 (0.0210) 9.0795 (0.2293)

Intercept mother β
′′
0 1.8846 (0.0206) 9.1660 (0.2301)

Gender effect on first born child β1 0.1010 (0.0305) 0.1699 (0.0957)
Gender effect on father β

′
1 0.0187 (0.0290) 0.0831 (0.0955)

Gender effect on mother β
′′
1 0.0145 (0.0285) 0.0350 (0.0954)

Std. dev. random effect σ 1.85E − 4 (0.0293) 2.33E − 4 (0.0420)
τ −− −−
φ 1.6333 (0.0624) −−
ρ −− 4.5376 (0.1055)

−2 loglik 5693.3 5512.3
AIC 5709.3 5528.3

To conclude, we should mention that, even though the DW model fits the
data quite well in the context of underdispersed data for the univariate case, there
is still scope for further research in the context of underdispersed clustered data.
Even though it is not our scope to fully encounter this problem here, boundary
issues are suggested for the variance component. Also note that the random
effects variability is very different between the epilepsy and Moerzeke studies,
underscoring that a large range of situations can be handled. Of course, this
does not preclude further research towards underdispersion.
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3.5 A Large Simulated Set of Data

To further explore the DW approach with dispersed count data, a large simulated
set of data is obtained to examine the deviance surface under different dispersion
situations. This highlights some other characteristics of the model such as the
orthogonality and computational ease of estimating the parameters (q, ρ).

Figure 3.6 presents contour plots of the deviance surfaces for five different
simulated DW data of size 1000, with expectation fixed at 1 and dispersion
indices at 0.25 (very strong underdispersion), 0.5 (strong underdispersion), 1
(equidispersion), 5 (strong overdispersion) and 10 (very strong overdispersion).
As a result, the figure indicates that the parameters are highly intra-related in the
likelihood function, consequently the ML estimators for ρ and q are correlated.
More specifically, a decreasing trend in the correlation seems to correspond with
an increasing dispersion index. Based on the deviance surface, computational
ease is combined with the ability to perform asymptotic (normally based) infer-
ences in the regions with high dispersion, i.e., DI →∞. Note that this is not a
genuine simulation study.
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Figure 3.6: Simulation study. Deviance surfaces for discrete Weibull model
fitted to five simulated data with expectation 1 and dispersion 0.25 (top-left),
0.5 (top-middle), 1 (top-right), 5 (below-left) and 10 (below-right). Dotted
lines are the maximum-likelihood estimates, and white points are the param-
eters used in the simulation.
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3.6 Conclusion

Starting from an existing univariate framework, we have proposed an extended
version that can handle both under- and overdispersed, and hierarchical data
structures. In both case studies, we showed that the model fits the data well,
for both under- and overdispersed situations. More specifically, the approach
used is able to flexibly model highly overdispersed, zero-inflated, heavy-tailed
and correlated data, similar to the CM approach. In addition, the approach is
capable of modeling some low overdispersed regions with zero-deflation (e.g., the
DR approach for small values of q) and even underdispersed data, regions that
cannot be captured within the CM framework. Due to the presence of a closed-
form median expression, interpretations of the parameters can directly be related
to the median profile, which is of particular interest when modeling skewed data.
Finally, orthogonality properties are examined through a large simulated set of
data. The resulting outcome indicates the presence of correlation between ML
estimators, related to the dispersion index.
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Abstract

The possible occurrence of over- and/or underdispersed count data has been ob-

served for decades, and the formulation of models to accommodate this phenomenon

has an equally long history; prominent models are the negative binomial and Conway-

Maxwell-Poisson models. While discrete finite mixture models offer a natural route

to model overdispersion, their use for underdispersion is uncommon. Here, a general

framework for discrete finite mixture models is proposed that flexibly handles both

over- and underdispersed count data, with appealing interpretation in both of these

cases. The flexibility of the proposal is twofold: (1) One can choose from a wide class

of component distributions; and (2) mixture weights do not have to be all positive but

certain negative values are allowed as well. As a result, a wide variety of dispersion

structures can be modeled. Particular focus is placed on underdispersed settings. Ap-

plying the approach to an underdispersed demographic data setting shows important

improvement in goodness-of-fit compared to existing models. Maximum likelihood

principles are used to obtain the results. We allow for negative weights in mixtures

to accommodate underdispersion. It will be shown that this approach, additionally,

allows for zero-inflation as well as -deflation.

4.1 Introduction

In methodological and applied statistical research, the use of finite mixture models
(FMMs; Newcomb, 1886; Prentice, 1988) has received considerable attention
due to its flexibility when modeling data across a wide variety of distributions
with various shapes, from symmetric to left- or right-skewed, from unimodal to
multimodal structures, with varying kurtosis, etc. A well-known class of FMMs
for continuous data is the Gaussian mixture model (GMM). In the case of discrete
data, with prominent members such as count data, Poisson mixtures, binomial
mixtures, etc. have been explored in detail by McLachlan and Peel (2004) and
Everitt and Hand (1981).

Thanks to the additional parameters involved, combined with the flexibility
of shape of the resulting marginal density function, FMMs have the potential
to capture many combinations of mean, variance, and higher-moment functions.
Therefore, Poisson and negative binomial mixtures, for example, are often sug-
gested to capture high variability (i.e., overdispersion, going beyond what a single
Poisson or negative binomial component is able to). A mixture of Conway-
Maxwell-Poisson models (Conway and Maxwell, 1962), for example, has recently
been explored to handle both situations separately in one framework (Sur et al.,
2015). While substantial research is already available in the literature to the
examination of FMMs in the context of overdispersed data, a sufficiently general
framework of FMMs will be proposed here that can handle overdispersion as
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well as underdispersion (relative to the Poisson model, with mean and variance
equal). Relaxing commonly used restrictions, we also allow for negative mixture
weights. Perhaps surprisingly, the resulting mixture still allows for an intuitively
appealing interpretation, in addition to having a meaningful mean and variance
function. While the introduction of negative weights within FMMs have already
been proposed by Bartholomew (1969), examining sufficient conditions for be-
ing a probability density function in a FMM of exponentials, Zhang and Zhang
(2005) explored the presence of negative weights in Gaussian mixtures for cluster
analysis. More general and recent work of FMMs with negative weights is avail-
able in Felgueiras et al. (2012) and Santos et al. (2016). These authors defined
them as pseudo-convex mixtures. Their use within underdispersed discrete data,
however, has not been examined before.

A related but different phenomenon is that of zero-inflation, where the fre-
quency of zero counts is higher than predicted by the distribution under inves-
tigation. Commonly used models to this effect are the zero-inflated Poisson
(ZIP) or zero-inflated negative-binomial (ZINB) model. Alternatively, so-called
hurdle models can be used. Just like the occurrence of underdispersion, also
zero-deflation can occur in practice. An overview, and extension to hierarchical
data, is presented in Kassahun et al. (2015). We will show that the proposed
model framework allows for both of these phenomena as well.

The remainder of this chapter is organized as follows. In Section 4.2, a moti-
vating case study is presented, coming from historic data on household members
from a Belgian town. Well-known univariate discrete distributions that allow the
fit of under- and overdispersed data, our basic building blocks, are reviewed in
Section 4.3, alongside our general FMM formulation. In addition, the added flex-
ibility of using/obtaining negative weights towards underdispersed discrete data
structures is sketched. Proof of concept is provided in Section 4.4, where the
case study is examined within the proposed mixture model family.

4.2 Case Study: Historic Life Expectancy in Mo-
erzeke

The Moerzeke dataset comes from a demographic, historical database of Mo-
erzeke, a small village in the center of Flanders (the Dutch speaking part of
Belgium) within the province of East Flanders. Information in the database is
drawn from church and civil registers, which can be taken as high quality and
appropriate for population studies, and includes all individuals who were born,
married, or died in Moerzeke.

In this study, a sample of 457 families was taken – by selecting all fathers born
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between 1750 and 1830, and then forming a family by including also their first
born child and the child’s mother. To avoid overlap, children already selected are
not included again, as either father or mother of new families. The main interest
lies in the exploration of the discrete life expectancy of family members within
the village, where the outcome has been discretized in decades. Figure 4.1 shows
the bar chart of the discretized life expectancy, resulting in a clear presence of left
skewed data. Furthermore, there is indication that the outcome can be explored
by a mixture of two discrete approaches. The sample mean and variance equal
6.29 and 3.47, respectively, pointing to underdispersion.

Figure 4.1: Moerzeke data. Bar chart of the rescaled discrete life expectancy

4.3 Finite Mixture Models

4.3.1 Elementary Components

Two key aspects of FMMs are the constituent components on the one hand,
and the total number of components on the other. While several authors have
contributed to the flexible use of the latter aspect (Huang et al., 2017, Zhang
and Cheng, 2004), focus in this part is mainly on the former one. In particular,
next to the Poisson case, a brief overview of existing count distributions will be
given that can handle both over- and underdispersion.

Log-linear Poisson models, which possess the property of equidispersion (mean
and variance equal), are often the standard or at least the basis for count data
modeling. To allow for more general mean-variance relationships, extended and
alternative approaches have been developed that can easily allow for over- and
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underdispersion. Examples are the negative binomial (NB), double Poisson (DP;
Efron, 1986), and generalized Poisson (GP; Famoye, 1993) models.

There are many count-data distributions in the literature (Johnson et al.,
2005; Chakraborty, 2015). Also the distributions described in Luyts et al. (2019)
can be considered. All of these are candidate building blocks for finite mixtures,
to be formalized in the next section. Evidently, this gives rise to a very large
class, with arguably a lot of potential to flexibly model overdispersion as well as
underdispersion, given that the aforementioned basic distributions contain mem-
bers with overdispersion, underdispersion, or a combination of both (depending
on the parameter values).

We consider a few of these here, i.e., the modified discrete normal (DN) dis-
tribution of Roy (2003), the discrete Weibull (DW) distribution (Nakagawa and
Osaki, 1975) and the double Poisson (DP) approach of Efron (1986). Character-
istics of these and other models that will be used in the data analysis (Section 4.4)
are given in Table 4.1. All three models allow the fit of under- and overdispersed
data (Klakattawi et al., 2018), in contrast to, for example, the NB approach,
which is confined to overdispersion and with equidispersion as a limiting case.
While a mean-variance association is given in the latter two distributions, this
is not assumed in the DN approach, which is symmetric in shape. Finally, no
analytical closed-form expressions for the mean and variance exist in the DW
case, implying the need for numerical approximations when making inferences
about these.

Table 4.1: Characteristics of some discrete distributions.

Element Notation Distribution
Model Poisson Discrete normal

PMF p(y | θ) e−λλy
y!

Φ
(
x−λ+0.5

σ

)
− Φ

(
x−λ−0.5

σ

)
Param.(s) θ λ ≥ 0 (λ;σ) ∈ IR
Mean E(Y) λ λ
Var. Var(Y) λ σ2 + 0.083333
Disp. Only equi Over/equi/under
Model Double Poisson Discrete Weibull

PMF p(y | θ) K(λ, φ)φ1/2e−φλ e−yyy
y!

(
eλ
y

)φy
λy

ρ − λ(y+1)ρ

Constant 1
K(λ,φ)

≈ 1 + 1−φ
12φλ

(
1 + 1

φλ

)
Param.(s) θ λ > 0;φ ∈ IR 0 < λ < 1; ρ > 0

Mean E(Y) λ
∑+∞

n=1 λ
nρ

Var. Var(Y) λ/φ 2
∑+∞

n=1 nλ
nρ − E(Y)− [E(Y)]2

Disp. Over/equi/under Over/equi/under
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4.3.2 General Finite Mixture Model Formulation

Suppose that a random variable Y follows a k-component FMM with parameter
vector θ = (θ1,θ2, . . . ,θk)

′
, in which θj is the parameter vector for component

j, j = 1, . . . , k. Its probability mass function (PMF) can be written as

p(y | θ) =
k∑
j=1

πj · pj(y | θj), (4.1)

where πj and pj(·) represent the weight and PMF for the jth elementary com-
ponent, respectively, subject to the usual constraints:

πj ≥ 0 and
k∑
j=1

πj = 1. (4.2)

Thus, from an interpretational point of view, the FMM assumes that the
random variable Y is generated from k distinct random processes. Each of
these processes is modeled by the PMF pj(·), and πj here defines the proportion
of observations from this particular process. This implies that πj ∈ [0, 1], even
though it is technically possible for values of πj to lay outside of the unit interval,
whilst maintaining a valid marginal distribution. As a result, the non-negative
constraint in Eq. (4.2) can be lifted. To still ensure that p(y | θ) satisfies the
constraint of a PMF, a new constraint is added:

p(y | θ) ≥ 0,∀y. (4.3)

This extends the FMM framework into the use of negative weight compo-
nents. A similar FMM framework was proposed by Zhang and Zhang (2005),
with the aim of developing a new iterative estimation method for GMMs. Our
purpose with the negative weights is to increase flexibility (Section 4.3.3) when
using the elementary components from Section 4.3.1, in particular towards mod-
eling underdispersion and/or zero-deflation (Section 4.4).

Further, we will allow the set of mixture component distributions to be either
equal (e.g., all Poisson), or different (ranging over a class of base distributions).

4.3.3 Negative Weights

In the proposed FMM framework, the mean and variance expressions are functions
of the model parameters originating from the elementary components. This
suggests that negative weights can be allowed, while preserving the validity of
the resulting PMF. In particular, we show the added flexibility negative weights
can bring, within a mixture of two Poisson distributions, even though the Poisson
itself is equidispersed and right-skewed.
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(i) Case: Mixture of 2 Poisson distributions

Consider a mixture of 2 Poisson distributions, so that the resulting PMF, mean
and variance functions take the form:

p(y | λ1, λ2) = π1
e−λ1λy1
y!

+ (1− π1)
e−λ2λy2
y!

, (4.4)

E(Y) = π1λ1 + (1− π1)λ2, (4.5)

Var(Y) = π1λ
2
1 + (1− π1)λ2

2 − [π1λ1 + (1− π1)λ2]2 (4.6)

+π1λ1 + (1− π1)λ2,

respectively. By imposing the relaxed constraints from Section 4.3.2, the follow-
ing boundaries can be found for weight π1 to still ensure a PMF for p(y | λ1, λ2):

π1 ∈ [R1, R2] =


[
0, e−λ2

e−λ2−e−λ1

]
if λ1 > λ2,[

e−λ2

e−λ2−e−λ1
, 1
]

if λ1 < λ2.
(4.7)

Calculations can be found in Supplementary Material S.9. Evidently, the bounds
depend on λ1 and λ2.

Figure 4.2: Boundaries of π1 in the 2-component Poisson mixture framework.

Surprisingly, more homogeneous mean parameters imply a wider range of
weight possibilities (Figure 4.2). Furthermore, it can easily be shown (Supple-
mentary Material S.10) that [0, 1] ⊂ [R1, R2] (∀λ1, λ2;λ1 6= λ2). To explore
some of the advantages of this extension, indexes for dispersion (DI) and zero-
inflation (ZI), introduced by Puig and Valero (2006), are computed and given
by:

DI =
Var(Y)

E(Y)
, ZI = 1 +

log [p(0)]

E(Y)
. (4.8)
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Note that these indices are defined in relation to the Poisson distribution. Thus,
the dispersion index indicates over-, under-, and equidispersion for, respectively,
DI > 1, DI < 1 and DI = 1. The zero-inflation index indicates zero-inflation for
ZI > 0, zero-deflation for ZI < 0 and no excess of zeros for ZI = 0. Figure 4.3
shows that, by examining the regions of DI and ZI for negative weights, under-
dispersion and/or zero-deflation can only be captured with negative weights.

(1) λ1 = 0.4 (2) λ1 = 0.4

(3) λ1 = 1 (4) λ1 = 1

(5) λ1 = 3 (6) λ1 = 3

Figure 4.3: Dispersion (DI; left) and zero-inflated (ZI; right) index w.r.t. π1

of the 2-component Poisson mixture framework, for varying λ1 and λ2 values.
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(ii) Interpretation of negative weights

Evidently, one view on a mixture with negative weights is a purely marginal one,
i.e., the modeler is interested only in describing the marginal distribution but
without specific focus on the mixture components and the interpretation that
they could bring.

When weights are non-negative, a hierarchical interpretation is possible, i.e.,
that the total population is composed of two sub-populations, each representing
a proportion πj, j = 1, 2, of the total population.

Negative weights can be seen as occurring for compensatory purposes. For
example, the probability of a large observation in one component is compensated
by a similarly large observation from a second component, given that the two
realizations are now not added but subtracted from one another. This reduces
the probability for larger values, and hence the variance.

4.4 Analysis of the Case Study

The Moerzeke dataset of Section 4.2 will now be analyzed with mixtures of 2
similar and different elementary components from Section 4.3.1. Because the
case study is used for illustrative purposes only, no distinction will be made
between males, females, and children. No covariates were included in the mod-
els to explore the fitted (theoretical) frequency distribution with the empirical
frequency distribution. Maximum likelihood estimation with quasi-Newton op-
timization is used to get the parameter estimates and standard errors. This
technique allows the fit of negative weights, in contrary to, for example, the
standard-used expectation-maximization (EM) algorithm in FMMs (Dempster
et al., 1977; O’Hagan et al., 2012). Results are given in Tables 4.2–4.3, and
Supplementary Materials S.11.

In the non-mixture models (Table 4.2 & Appendix S.11.1), large improve-
ments in log-likelihood values can be observed for the DN, DP and DW model,
when comparing them to the Poisson case. A significant dispersion parameter
φ clearly indicates the presence of underdispersion within the data, as had also
been discovered at the descriptive level (Section 4.2). Overall, the DW model
can be considered as the ‘best’ in terms of log-likelihood among the non-mixture
models, partially explained by the fact that an underlying time-to-event relation-
ship is given here, i.e., a discretized time-to-event outcome, in contrary to the
other models.
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Table 4.2: Moerzeke dataset. Maximum-likelihood estimates (standard errors)
for the coefficients in the (1) Poisson (P), (2) discrete normal (DN), (3)
double Poisson (DP), and (4) discrete Weibull (DW) distribution.

P DN DP DW
Effect Par. Est. (s.e.) Est. (s.e.) Est. (s.e.) Est. (s.e.)
Intensity λ 6.2852 (0.0677) 6.2850 (0.0503) 6.2852 (0.0540) 0.9999 (2.5E − 5)
Std. dev. σ −− (−−) 1.8395 (0.0360) −− (−−) −− (−−)
Dispersion φ −− (−−) −− (−−) 1.5710 (0.0600) −− (−−)

ρ −− (−−) −− (−−) −− (−−) 4.5369 (0.1055)
−2 log-lik. 5867.6 5595.3 5746.6 5522.8
AIC 5869.6 5599.3 5750.6 5526.8
BIC 5874.8 5609.8 5761.1 5537.2

By considering the FMM approach with similar (Table 4.3 & Appendix S.11.2)
and different components (Table 4.4 & Appendix S.11.3), further lowering of −2
log-likelihood, AIC, and BIC values can be observed in all models compared to
their univariate components from Table 4.2, with lowest value given at the dis-
crete Weibull FMM approach with similar components. Based on the significant
parameter estimates and goodness-of-fit quantities, the Moerzeke data is best
modeled with a mixture of 2 underdispersed components. Furthermore, a nega-
tive fit in weight (1− π1) is obtained in the Poisson FMM approach with similar
components.

Table 4.3: Moerzeke dataset. Maximum-likelihood estimates (standard er-
rors) for the coefficients in their corresponding finite mixture model frame-
works with similar components (MP, MDN, MDP, MDW). Components are
the Poisson (P), discrete normal (DN), double Poisson (DP), and discrete
Weibull (DW) distribution.

MP MDN MDP MDW
Effect Par. Est. (s.e.) Est. (s.e.) Est. (s.e.) Est. (s.e.)
Intensity 1 λ1 5.4661 (0.1113) 4.5534 (0.2484) 4.6775 (0.1675) 0.9999 (3.2E − 8)
Std. dev. 1 σ1 −− (−−) 1.6430 (0.1174) −− (−−) −− (−−)
Dispersion 1 φ1 −− (−−) −− (−−) 1.3854 (0.1064) −− (−−)

ρ1 −− (−−) −− (−−) −− (−−) 8.3960 (0.6059)
Intensity 2 λ2 5.0918 (0.1307) 7.3614 (0.0626) 7.3376 (0.0484) 0.9956 (0.0014)
Std. dev. 2 σ2 −− (−−) 0.8862 (0.0438) −− (−−) −− (−−)
Dispersion 2 φ2 −− (−−) −− (−−) 8.4796 (0.6980) −− (−−)

ρ2 −− (−−) −− (−−) −− (−−) 3.3182 (0.2914)
Mixing prob. π1 3.1892 (1.2438) 0.3833 (0.0449) 0.3956 (0.0305) 0.7195 (0.0702)
−2 log-lik. 5814.1 5324.2 5358.9 5310.9
AIC 5820.1 5334.2 5368.9 5320.9
BIC 5835.7 5360.3 5395.0 5347.0



Chapter 4 67

Table 4.4: Moerzeke dataset. Maximum-likelihood estimates (standard errors)
for the coefficients in their corresponding finite mixture model frameworks
with different components (Mixt. P+DN, Mixt. P+DP, Mixt. P+DW, Mixt.
DN+DP, Mixt. DN+DW, Mixt. DP+DW). Components are the Poisson
(P), discrete normal (DN), double Poisson (DP), and discrete Weibull (DW)
distribution.

Mixt. P+DN Mixt. P+DP Mixt. P+DW
Effect Par. Est. (s.e.) Est. (s.e.) Est. (s.e.)
Intensity 1 λ1 4.7133 (0.1601) 4.8153 (0.1504) 4.4450 (0.1958)
Std. dev. 1 σ1 −− (−−) −− (−−) −− (−−)
Dispersion 1 φ1 −− (−−) −− (−−) −− (−−)

ρ1 −− (−−) −− (−−) −− (−−)
Intensity 2 λ2 7.2502 (0.0513) 7.2925 (0.0477) 0.9999 (3.8E − 8)
Std. dev. 2 σ2 0.9326 (0.0438) −− (−−) −− (−−)
Dispersion 2 φ2 −− (−−) 8.2388 (0.7019) −− (−−)

ρ2 −− (−−) −− (−−) 8.1576 (0.4208)
Mixing prob. π1 0.3805 (0.0288) 0.4066 (0.0276) 0.3009 (0.0319)
−2 log-lik. 5353.4 5378.1 5329.6
AIC 5361.4 5386.1 5337.6
BIC 5382.3 5407.0 5358.5

Mixt. DN+DP Mixt. DN+DW Mixt. DP+DW
Effect Par. Est. (s.e.) Est. (s.e.) Est. (s.e.)
Intensity 1 λ1 4.7703 (0.2174) 3.8696 (0.2838) 4.2241 (0.2533)
Std. dev. 1 σ1 1.7161 (0.0978) 1.4198 (0.1466) −− (−−)
Dispersion 1 φ1 −− (−−) −− (−−) 1.3731 (0.1504)

ρ1 −− (−−) −− (−−) −− (−−)
Intensity 2 λ2 7.4187 (0.0559) 0.9999 (4.1E − 8) 0.9999 (3.2E − 8)
Std. dev. 2 σ2 −− (−−) −− (−−) −− (−−)
Dispersion 2 φ2 9.2706 (0.8534) −− (−−) −− (−−)

ρ2 −− (−−) 8.1644 (0.4689 8.2549 (0.4439)
Mixing prob. π1 0.4280 (0.0433) 0.2513 (0.0396) 0.2854 (0.0373)
−2 log-lik. 5345.2 5314.6 5319.1
AIC 5355.2 5324.6 5329.1
BIC 5381.3 5350.8 5355.2

To explore the negative weight estimation in more detail, focus is placed
on the estimated mean and variance expressions (Table 4.5). Indeed, while the
univariate Poisson case is limited to equidispersed data structures, extra flex-
ibility is now gained in the variance expression towards underdispersed cases
(Section 4.3.3).



68 Chapter 4

Table 4.5: Moerzeke dataset. Mean and variance estimates of all fitted uni-
variate and finite mixture models. Components are the Poisson (P), discrete
normal (DN), double Poisson (DP), and discrete Weibull (DW) distribution.

P DN DP DW∗

Est. (s.e.) Est. (s.e.) Est. (s.e.) Est. (s.e.)
Mean 6.2852 (0.0677) 6.2850 (0.0503) 6.2852 (0.0540) 6.2985 (0.0462)
Variance 6.2852 (0.0677) 3.4672 (0.1324) 4.0007 (0.1566) 2.3914 (0.1100)

MP MDN MDP MDW∗

Est. (s.e.) Est. (s.e.) Est. (s.e.) Est. (s.e.)
Mean 6.2855 (0.0622) 6.2851 (0.0503) 6.2852 (0.0509) 6.2874 (0.0501)
Variance 4.4881 (0.1898) 3.4662 (0.1363) 3.5507 (0.1348) 2.8656 (0.1313)

Mixt. P+DN Mixt. P+DP Mixt. P+DW∗ Mixt. DN+DP
Est. (s.e.) Est. (s.e.) Est. (s.e.) Est. (s.e.)

Mean 6.2850 (0.0533) 6.2852 (0.0538) 6.2874 (0.0520) 6.2852 (0.0503)
Variance 3.9324 (0.1322) 3.9639 (0.1263) 3.3015 (0.1494) 3.4353 (0.1364)

Mixt. DN+DW∗ Mixt. DP+DW∗

Est. (s.e.) Est. (s.e.)
Mean 6.2857 (0.0503) 6.2863 (0.0505)
Variance 3.0073 (0.1406) 3.0782 (0.1437)
∗Approximations are used to obtain the estimates

4.5 Conclusion

In this chapter, the traditional FMM framework in count data is extended to
account for both over- and underdispersion by considering a flexible class of
elementary components, thus lifting the non-negativity constraint for mixture
probabilities. Here, focus is placed on the practical use of the approach within un-
derdispersed data. It is also useful to capture zero-deflation, in addition to zero-
inflation. Applying the framework to underdispersed demographic data showed
advantageous regarding fit when comparing it to existing univariate frameworks.
Negative and positive weights are encountered in the data analysis, underscoring
the practical relevance of this extension.

Extensions are possible and desirable in various ways. For example, when data
are measured longitudinally or when otherwise hierarchical data are encountered,
correlated-data versions can be constructed.
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Abstract

When fitting Poisson-normal mixed-effects models to correlated non-negative discrete

data, two viewpoints can be taken regarding the evaluation and interpretation of their

parameters. In a hierarchical approach, subject-specific inferences are envisaged along-

side population-averaged inferences; in a marginal approach, only the latter are of

interest. In the hierarchical approach, the random-effects distribution is of interest,

hence its variance-covariance matrix should be positive definite. In the marginal ap-

proach, this constraint does not apply and only the weaker condition of the marginal

variance-covariance structure to be valid applies: The variance-covariance structure

governing the random-effects does not have to be positive definite, as long as the

overall variance-covariance structure is. For a single random effect, positive definite-

ness obviously corresponds to a positive random effect variance.

While this subject has already been examined in depth by Pryseley et al. (2011) in

the generalized linear mixed model setting, where the occurrence of negative variance

components is theoretically linked with negative intraclass correlations, underdisper-

sion, and others, a flexible estimation approach in the hierarchical count data case

is still lacking. Here, flexible (closed-form) second-order generalized estimating equa-

tions are proposed based on marginal moments up to order four of the Poisson-normal

mixed framework, allowing for the estimation of negative variance components in the

marginalized case. The methodology is not restricted to count data but can be applied

to hierarchical time-to-event data as well. The approach allows for flexible modeling

of the mean and variance-covariance structures. Model-based along with empirically

corrected precision estimators are derived. Data from a historical demographic study

are analyzed with a clustered discrete time-to-event outcome, that can be analyzed as

a count.

5.1 Introduction

Poisson mixed models, well-known members of the generalized linear mixed model
(GLMM; Thall and Vail, 1990; Dean, 1991; Engel and Keen, 1994) family, can
accommodate both hierarchies in the data and are, too some extend, flexible
in terms of dispersion modeling by adding random effects to the linear predic-
tor. These random effects are considered to be drawn from a probabilistic, often
normal, law. Applications range over medical, sociological, and psychological sci-
ences, to name but a few. A medical example is the number of weekly epileptic
attacks, recorded over several weeks. In psychological studies, the contact behav-
ior among adults may be assessed repeatedly over time during the SARS-CoV-1
period.

Inferences in Poisson mixed models are frequently conducted via maximiz-
ing the marginal likelihood, i.e., the obtained likelihood by integrating over the
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random effects. It can be cumbersome because of non-linearity caused by the
presence of a non-linear link function and, as a consequence, lack of a (conve-
nient) closed-form expression or presence of infinite series. Therefore, approxi-
mation methods have been proposed for the integration that is required to derive
the said marginal likelihood. Several such approximation methods exist, i.e., (1)
those that approximate the integral numerically, and (2) those that approximate
the integrand by Taylor-series expansion, such that a closed-form expression ex-
ists for the approximate integral. Examples like Gaussian quadrature (Pinheiro
and Bates, 1995) and Monte Carlo integration (Zeger and Karim, 1991) have
been proposed within the first approach, where the integral is substituted by a
finite sum and maximized. For the latter approach, techniques like the Laplace
approximation (Tierney and Kadane, 1986) and quasi-likelihood methods such
as penalized quasi-likelihood (PQL; Schall, 1991; Breslow and Clayton, 1993),
marginal quasi-likelihood (MQL; Goldstein, 1991) and several of their extensions
(e.g., PQL2 and MQL2) have been constructed and applied. A full review of
these methods can be found in Tuerlinckx et al. (2006). Numerical integration
can be accurate but time-consuming, whereas PQL and especially MQL can be
very inaccurate, especially when dealing with highly skewed data.

Because the models’ genesis is subject-specific, also the fixed-effects param-
eters embrace a subject-specific interpretation. For example, a fixed treatment-
effect parameter would describe the difference in response between a treated
and an untreated subject with the same level for their random effects. This is
not always what one wants. The average (marginal) treatment effect may be
of higher scientific interest. A related observation is that the parameter space
restrictions enforce a valid hierarchical interpretation; e.g., the distribution of
the said random effects is valid, with a positive definite variance-covariance ma-
trix. For a marginal interpretation, though, the milder restriction of a positive
definite marginal variance-covariance matrix is all that is needed. In particular,
some variance components in the hierarchical model may be negative, while still
producing a valid marginal interpretation, but conventional estimation methods
and their implementations preclude this. Several authors have investigated this
phenomenon. These include Molenberghs and Verbeke (2011), Pryseley et al.
(2011) and Oliveira et al. (2017), for the linear mixed models (LMMs; Laird and
Ware, 1982), GLMMs and combined modeling (CM) framework of Molenberghs
et al. (2010), respectively.

Alternatively, one can turn to methods that account for the hierarchical
design of the data, without adding cluster-specific effects and therefore di-
rectly turn to investigating marginal inferences, with parameters that carry out
a marginal, population-averaged, interpretation. Arguably, the most popular
marginal method is the generalized estimating equations (GEE) approach by
Liang and Zeger (1986), which extends the generalized linear model (GLM; Nelder
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and Wedderburn, 1972; McCullagh and Nelder, 1989; Jørgensen, 1987) by con-
ceding for within-cluster correlation, via a defined working correlation structure.
Parameter estimators – obtained by solving the so-called GEE – remain consistent
and asymptotically normal when misspecifying this working correlation. Unfor-
tunately, when scientific interest also lies in the variance-covariance structure,
the standard GEE approach falls short of this. To obtain these in the Poisson
mixed framework, and maintain a marginal interpretation of the fixed-effects
parameters, focus will here be placed on the second-order GEE (GEE2; Liang
et al., 1992, Zhao and Prentice, 1990, Prentice and Zhao, 1991) approach. This
method involves the derivation of the marginal moments up to order four, or
approximations thereof. The so-obtained estimators allow for negative variance
components and/or underdispersion.

The remainder of this chapter is organized as follows. We devote Section 5.2
to the introduction of a motivating case study where interest is with a clustered
discretized time-to-event outcome. In these data, underdispersion is present.
Negative variance components in the Poisson mixed model and the range thereof
is examined in Section 5.3; particular focus is placed on the random-intercepts
case. The basic principles of GEE2 and their application to the Poisson mixed
case is the subject of Section 5.4. Again, the main focus is on the random-
intercept model, although extension to, for example, random slopes, is definitely
possible. The data are analyzed in Section 5.5. Concluding remarks are given in
Section 5.6.

5.2 The Moerzeke Data

The database of Moerzeke has been analyzed before by Matthijs et al. (2002). In
sociological and demographic historical studies, research around the transmission
of longevity from parents to offspring has led to various insights (e.g., Van den
Berg et al., 2019; Matthijs et al., 2002). Here, historical data of Moerzeke,
a small Flemish village located in the province of East Flanders (Belgium), is
explored over a period of three hundred years (18th–20th centuries). The out-
come of interest is here the life expectancy among family members, expressed in
decades, i.e., a discretized time-to-event outcome.

We focus on an initial sample of 1062 women with their relatives. Information
was assembled from civil and church registration certificates. Several filters were
applied to obtain our sample. The sample consists of not-remarrying women,
to avoid overlap of children in different households. Only household members
who were born and died in Moerzeke were used. Households with at least one
“non-Moerzeke” member are therefore excluded. Households with no children
were excluded. When more than one child was available in a family, only the



Chapter 5 73

oldest child is included. Only fathers born between 1750 and 1830 were selected.
Applying all these criteria results in a sample of 457 families, with a mean age
at death of 71.9 and 71.7 years for men and women, respectively.

5.3 The Poisson Mixed Approach

5.3.1 Methodology

Given the focus on longitudinal/hierarchical count and discretised time-to-event
outcomes, it is common to choose, conditional on the random effects, the Poisson
distribution as the base outcome distribution and normal random effects in the
mean parameter to account for association, resulting in the Poisson mixed model.
Consider Yij to be the jth non-negative discrete response in cluster/subject i,
i = 1, . . . , N , j = 1, . . . , ni. The Poisson mixed model takes the form:

P (Yij = yij | bi) =
e−λij · λyijij

yij!
, (5.1)

λij = ex
′
ijβ+z

′
ijbi , (5.2)

bi ∼ N(0, D), (5.3)

where β and x
′
ij are p-dimensional vectors of unknown fixed parameters and

known covariate values, respectively, and bi and z
′
ij are q-dimensional vectors

of random effects and known covariate values, respectively. Furthermore, N
describes the total amount of clusters/subjects, and ni expresses the number of
repeated measurements for cluster/subject i. D is the q x q covariance matrix
for the random effects bi.

In this chapter, to gain useful insight from sufficiently simple expressions,
particular focus will be placed on the random-intercept approach with no covari-
ates, i.e., x

′
ijβ = β, z

′
ijbi = bi and D = d. Generalizations to more complex

structures like random slopes in the Poisson mixed framework are straightforward.

5.3.2 Negative Variance Components

For the Poisson-normal model, closed-forms exist for the central and non-central
marginal moments. Formulations of these moments up to the fourth order can
be found in Appendix S.12. In case of the marginal mean and variance structure,
the following expressions are obtained:

E(Yij) = eβ+ 1
2
d, (5.4)

Var(Yij) = eβ+ 1
2
d +

(
eβ+ 1

2
d
)2 (

ed − 1
)
. (5.5)
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Evidently, negative estimates for d can easily be obtained while still maintaining
a valid marginalized variance structure. In particular:

Theorem 1. If β (or linear predictor) is sufficiently small, i.e., when β ≤
ln(3

√
3

2
), then all real values for d are valid to secure a proper marginalized

variance structure. Otherwise, there is a finite interval where this is not
attained.

Proof. Let f̃(d) = eβ+ 1
2
d + e2βed(ed − 1) and ˜̃f(δ) = 1 + kδ(δ2 − 1), where

k = eβ and δ = e
1
2
d. It can easily be shown that:

f̃(d) ≥ 0⇔ ˜̃f(δ) ≥ 0. (5.6)

Furthermore, a global minimum exists for ˜̃f(δ), since ∂
∂δ

[
˜̃f(δ0)

]
= 0⇔ δ0 =

√
3

3
and ∂2

∂δ2

[
˜̃f(δ)

]
= 2
√

3k ≥ 0 (concave up). Evaluating δ0 in (5.6) results in

the constraint β ≤ ln(3
√

3
2

) for d to be valid for all values. Due to the convexity
property, and when this constraint no longer applies, there is a finite interval
where no valid values for d are observed on the real line (Figure 5.1).

Figure 5.1: Marginal variance structure of the Poisson-normal random-intercept
approach with no covariates w.r.t. variance component d, for varying β values.
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5.4 Second-order Generalized Estimating Equa-
tions

Zhao and Prentice (1990) and Liang et al. (1992) proposed second-order GEE
(GEE2) by using correlations and odds ratios, respectively. These are a natural
extension of the Prentice (1988) approach, which modified the primary GEE of
Liang and Zeger (1986). In what follows, we will propose and describe the GEE2
approach with GLMMs marginal moments, and study it explicitly for the Poisson-
normal model of Section 5.3. Details of the Liang and Zeger (1986) and Prentice
(1988) methods can be found in Molenberghs and Verbeke (2005).

5.4.1 Methodology

Consider Yi = (Yi1, . . . , Yini)
′

to be the vector of non-Gaussian outcomes for
cluster/subject i, i = 1, . . . , N , following exponential family densities, expressed
by

fi(yij | bi,β, φ) = exp{φ−1 · [yij · νij − ψ(νij)] + c(yij, φ)}, (5.7)

with

h[ψ′(νij)] = h[E(Yij | bi,β)] = ηij = x′ijβ + z′ijbi, (5.8)

bi ∼ N (0, D) . (5.9)

The same terminology is used as in Section 5.3.1. Consider Si to be the ni-
dimensional vector of empirical marginal variances defined by

Si = (Sij)
′

j∈[1,ni]
, (5.10)

where Sij = [Yij − E(Yij)]
2. In what follows, estimating equations will be pro-

posed for Υ and Ω, i.e., the vector of fixed and random parameters, respectively,
originating from the marginal moments of Eq. (5.7)-(5.9).

Let Θ be the vector consisting of all parameters in Υ and Ω. The joint
estimating equations are

Q(Θ) =
∑
i

P
′

iΣ
−1
i fi = 0, (5.11)

where

Pi =

[
Pi11 Pi12

Pi21 Pi22

]
, Σi =

[
Σi11 Σi12

Σi21 Σi22

]
, fi =

[
Yi − µi
Si − ηi

]
,
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with µi = E(Yi), ηi = E(Si), Σi11 = Var(Yi), Σi12 = Σi21 = Cov(Yi,Si),
Σi22 = Var(Si), Pi11 = ∂µi

∂Υ
, Pi12 = ∂µi

∂Ω
, Pi21 = ∂ηi

∂Υ
, and Pi22 = ∂ηi

∂Ω
.

The parameter estimates obtained from Eq. (5.11), denoted Υ̂ and Ω̂, can
be derived either analytically (if a closed-form exists) or numerically by the Fisher
scoring algorithm (Longford, 1987) where the iterative procedure at step (k+ 1)
takes the form:

Υ̂
(k+1)

Ω̂
(k+1)

 =

Υ̂
(k)

Ω̂
(k)

+
1

N

[∑
i

P̂
′

iΣ̂
−1

i P̂i

]−1 [∑
i

P̂
′

iΣ̂
−1

i f̂i

]
, (5.12)

where P̂i, Σ̂i and f̂i are the values of Pi, Σi and fi, respectively, evaluated at

(Υ̂
(k)
, Ω̂

(k)
). Since only marginal moments are used, there is no requirement

that random effects variance-covariance matrix D needs to be positive definite.
Furthermore, model-based and empirically corrected (sandwich) standard errors
are derived as the square root of the diagonal entries of

U∗ =

[∑
i

P
′

iΣ
−1
i Pi

]−1

, (5.13)

U∗∗ = U∗

[∑
i

P
′

iΣ
−1
i fif

′

iΣ
−1
i Pi

]
U∗, (5.14)

respectively.

5.4.2 Application: The Poisson-normal Model

In the Poisson-normal model of Section 5.3.1, the score equations become:

Q([β, d]
′
) =

NB2∆2K

det(Σi)



1

N

∑
i

∑
j

Yij︸ ︷︷ ︸
k1

−B∆

1

N

∑
i

∑
j

Y 2
ij︸ ︷︷ ︸
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= 0, (5.15)
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where B = eβ, ∆ = e
1
2
d, and K =

[
K11 K12

K21 K22

]
with

K11 = B3∆7
(
∆4 − 1

)2
+B2∆4

(
5∆2 − 1

) (
∆2 − 1

)
+ 2B∆3, (5.16)

K12 = −B2∆4
(
∆2 − 1

)2
, (5.17)

K21 =
1

2

[
B3∆7

(
∆4 − 1

) (
∆4 − 3

)
+B2∆4

(
5∆4 − 12∆2 + 3

)]
, (5.18)

K22 =
1

2

[
−B2∆4

(
∆2 − 3

) (
∆2 − 1

)
+ 2B∆3

]
. (5.19)

Derivations can be found in Appendix S.13. Solving these equations analytically
result in the following closed-form expressions:{

β̂ = 2ln(k1)− 1
2
ln(k2 − k1)

d̂ = ln(k2 − k1)− 2ln(k1)
(5.20)

Figure 5.2: Parameter estimates solution of the second-order generalized esti-
mating equations for the Poisson-normal random-intercept approach with no
covariates w.r.t. the non-central first sample moment k1, for varying differ-
ences between the non-central second and first sample moment, i.e., k2 − k1.

For calculating the model-based and sandwich standard errors, a PROC IML
macro has been written (Appendix S.13.3). Due to the presence of expression
fif

T
i , non-central sample moments up to the fourth order, i.e., k1, k2, k3(=

1
N

∑
i

∑
j Y

3
ij), and k4(= 1

N

∑
i

∑
j Y

4
ij), are needed for these calculations.
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5.5 Analysis of the Moerzeke Data

The proposed GEE2 of Section 5.4.2 will be applied to the Moerzeke study.
While Luyts et al. (2019) detected boundary issues in their analysis of Moerzeke,
we try overcome this issue by allowing the fit of negative variance components.
Particular focus is laid on the exploration of discretized longevity within household
members, expressed in decades. It is a priori clear that the suggested method
should flexibly allow for underdispersion, given that sample mean is 6.29 and
sample variance 3.47.

Let Yij denote the discretized longevity for person j (j = 1, 2, 3), i.e., father,
mother, or first child, within household i (i = 1, 2, . . . , 457). The solution of
the GEE2 approach for the Moerzeke data is given in Table 5.1. A graphical
representation of the parameter estimates is presented in Figure 5.3.

Table 5.1: Moerzeke data. Parameter estimates (model-based standard er-
rors; empirically corrected standard errors) of the second-order generalized
estimating equations solution for the Poisson-normal random-intercept ap-
proach with no covariates, based on the non-central first, second, third and
fourth sample moments, i.e., k1, k2, k3, and k4, respectively.

k1 k2 k3 k4

6.29 42.97 308.56 2290.46

Effect Par. Est. (m.b. s.e.; e.c. s.e.) Z (m.b.) p-value Z (e.c.) p-value
Fixed effect β 1.8752 (0.0138; 0.0159) 135.88 < 0.0001 117.94 < 0.0001
Var. comp. d -0.0740 (0.0063; 0.0064) -11.75 < 0.0001 -11.56 < 0.0001

As result, clear significant presence of a negative variance component is ob-
served, underscoring our perception of the possible presence of negative variance
components due to the feasible attendence of underdispersion in the Moerzeke
data. In addition, the discrepancy between both model-based and empirically
corrected standard errors is slight for both effects, implying that the working
assumptions may well be sensible.
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Figure 5.3: Moerzeke data. Parameter estimates solution of the second-order
generalized estimating equations for the Poisson-normal random-intercept ap-
proach with no covariates, for the observed non-central first and second sam-
ple moments.

5.6 Conclusion

We have presented second-order estimating equations, based on the specific first-
and second-order marginal moments of a generalized linear mixed model for count
data, consisting of a Poisson model for the outcomes given random effects, and
normally distributed random effects. The second-order nature of the method
allows for proper inferences, not only on fixed effects, but also on variance com-
ponents. At the same time, negative variance components, allowing for under-
dispersion, negative intraclass correlations, and others, are easily accommodated.
Evidently, a negative random effects variance implies that a hierarchical inter-
pretation is no longer possible. This is fine in applications were interest is on
population-averaged quantities.

A PROC IML macro have been developed to derive the proposed method and
make it applicable to other datasets as well. The macro reports both model-based
and empirically corrected standard errors.

We should conclude by mentioning that our proposal also has restrictions. In
this chapter, derivations and computations for analyzing the Moerzeke dataset
were limited to a simple random-intercepts Poisson mixed model with no co-
variate structure. Extensions to a random-slope construction, with or without
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the inclusion of covariates, and consideration of marginal moments originating
from other GLMM members can be considered as well. These generalizations
are currently in development.



Chapter 6

Concluding Remarks

6.1 General Conclusion

In this manuscript, existing statistical developments have been explored for the
analysis of two datasets originating from an observational clustered sociological
study and longitudinal medical multi-center study. Due to the outcomes of in-
terest, i.e., (discretized) longevity and number of epileptic attacks, respectively,
particular focus was laid on counts and time-to-event outcomes. Under- and
overdispersion were detected in the analysis. New statistical developments have
been proposed, and applied to these studies. Significant improvement based on
goodness-of-fit measurements are detected in our analysis compared to exist-
ing techniques, underscoring the relevance of this research. Characterizations of
these new and existing methods have mathematically been investigated, high-
lighting the similarities and dissimilarities with some well-known methods in the
literature.

The manuscript is divided into three parts. In the first part, i.e., Chapter 2,
existing statistical methodologies were utilized for the analysis of a dispersed,
clustered historic demographic data setting. Two models were considered, each
with their own properties. A PD model with PL ideas was used to investigate
the association structure of the inheritance in survival among family members
within Moerzeke. A CM framework for time-to-event outcomes was fitted to re-
veal the presence of dispersion. A positive association between child and mother
was observed within the PD model, with higher associations in case of daugh-
ters rather than sons. The plausible presence of negative variance components
in the CM was highlighted, and theoretically linked with underdispersion. As a
result, boundary issues were detected in the model fit when considering standard
estimation tools. In the second part, i.e., Chapter 3 and Chapter 4, existing
and new statistical frameworks were extended and developed, respectively, to
handle dispersed, and/or correlated discrete data structures. In Chapter 3, a
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discrete Weibull-count approach was broadened with random effects to analyze
the number of epileptic seizures and discretized longevity within Moerzeke, in a
longitudinal and clustered setting, respectively. A comparison with some well-
known count models was made, leading to the conclusion that the suggested
approach properly fits the data compared to other conventional models. Charac-
teristics of the approach demonstrated its practical relevance when considering
zero-inflated, heavy-tailed, overdispersed and correlated skewed discrete data,
and even underdispersed, zero-deflated skewed discrete data. In Chapter 4, a
discrete FMM family with possible negative weights was proposed to account for
over- and underdispersed, as well as zero-inflated/-deflated discrete data. In the
data analysis of an underdispersed demographic setting, negative weights were
fitted in a Poisson mixture of 2 components. In the final and third part of this
thesis, i.e., Chapter 5, a marginal moment-based estimation procedure for counts
was constructed to allow the fit of negative variance components originating from
marginal moments of a hierarchical Poisson mixed framework. The estimation
approach can easily be applied to applications in time-to-event outcomes as well.

Implementation of all models considered in this thesis were done in the sta-
tistical package SAS 9.4, using PROC NLMIXED. For matrix calculations, e.g.,
for calculating the model-based and empirically corrected standard errors in our
GEE2 approach (Chapter 5), the PROC IML procedure was used. To avoid
convergency problems on bounded parameters, appropriate transformations in
combination with the delta method were used in the coding.

6.2 Limitations

Consistent with other (statistical) research in the literature, there is still capacity
for growth and alternative routes in our suggestions and implementations.

Throughout this manuscript, a historic sample of the Moerzeke population
consisting of complete data in lifespans was examined to explore our research
topics of interest. Selection criteria such as the exclusion of childless households
were applied. These restrictions were kept unchanged throughout this thesis,
maintaining the underdispersed structure of the data but limiting our conclu-
sions to this particular subset. Different subsets could have been explored as
well, emphasizing different research questions, e.g., the comparison of native and
foreign second generation child mortality within the 18th century of Moerzeke.
These questions remain open for further investigation.

In Chapter 2, two clustered time-to-event models were considered. Both
models rely on the underlying Weibull distribution, even though other distribu-
tions can be considered as well. Gavrilov and Gavrilova (1991), for example,
suggested the Gompertz-Makeham distribution as an appropriate alternative to
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explore mortality patterns in human populations between the ages of 20 and 80
years. Alternately, semi-parametric and/or non-parametric approaches could also
have been considered, ruling out the problem of certain parametric choices. In
this thesis, focus was placed on full-parametric models, with the aim of investi-
gating certain model characteristics (e.g., DI, ZI and HT). Because of simplicity
in interpretation, a PD model was used to analyze the pairs of familial survival
outcomes. Model terminology with Plackett copulas could easily be substituted
with other copula functions as well. The possible presence of underdispersion was
detected with a WN and WGN model, opening new research possibilities that we
explored further in this manuscript. Since these models are used for exploratory
purposes only, we maintained ease in exploration in our analysis by opting for
constant gamma parameters and a random-intercept structure.

In Chapter 3, a discrete version of the Weibull distribution is extended with
random effects, and contrasted with some well-known count models that allow
the fit of under- and/or overdispersed, correlated data, e.g., the CM. Inferences
are interpreted on the median scale instead of the classical mean scale, making
the comparison between model parameters with other well-known models cum-
bersome when highly skewed data is present. Additionally, Burger et al. (2020)
pointed out that the DW approach is not necessary completely robust to ex-
cess zeros, and constructed a zero-inflated extension of our proposal. Maximum
likelihood principles with numerical optimization techniques were used to obtain
inferences. Only one level of hierarchy was present within the studied Moerzeke
and epilepsy data. In most research, however, multiple hierarchical levels occur,
and may pose computational challenges. Alternative estimation methods like
Bayesian, semi-parametric or pseudo-likelihood and non-parametric approaches,
can be used instead, as was done in Chapter 2 for the PD model.

In Chapter 4, an extended discrete FMM framework is proposed to model the
discrete life expectancy of family members within the historic cohort Moerzeke.
We limited the (mathematical) exploration of negative weights only to a mix-
ture of two Poisson distributions, the most standard count distribution, leaving
a whole area of discrete FMM models with possibly negative weights still open
for investigation. No distinction was made between males, females, and children,
an assumption that is often violated in practice. Therefore, extensions such as
correlated-data versions are desirable in various ways. Properties like identifiabil-
ity and convergence properties of various numerical optimization strategies were
not covered in this chapter. The investigation of such properties remains open
for further research.

In Chapter 5, a marginalized model-based estimation technique was proposed
based on marginal moments of the Poisson mixed-effects model. Computations
were considered for the random-intercept case only with no covariates, but can
easily be extended with more complex structures as well, e.g., inclusion of co-
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variates, random slopes with/without correlation, etc. While the method easily
allows for the estimation of negative variance components and/or underdisper-
sion, it involves the derivation of the marginal moments up to order four, or
approximations thereof. In case of the extended DW model (Chapter 3), for ex-
ample, no closed-form formulations exist for the first- and second-order moments,
making the method not applicable here. Additionally, hands-on implementations
in standard software packages are still lacking.

In general, the use of existing and new mixed models was considered. Nor-
mality was implicitly assumed for the underlying random effects distributions; an
assumption that researchers often made when using mixed models. Diagnosis of
the validity of this assumption, and, in general, towards model diagnostics, was
not investigated in this manuscript.

6.3 Prospects for Future Research

The development and exploration of statistical models is done for centuries, with
the aim of reducing bias in the data analysis. While the area of big data arises
in every field of research, complexities increase in data structures (e.g., increased
number of underdispersed data settings, level of hierarchies, etc.), indicating the
need for new advanced techniques. Possible limitations in existing statistical tools
are often not notified during the data analysis, making inferences possibly biased.
In this thesis, we tried to address this problem by mentioning some drawbacks
in classical techniques that are commonly used in dispersed, correlated data
settings. Some new and alternative hierarchical frameworks are proposed in this
thesis, putting particular focus on counts and time-to-event outcomes.

Several challenges are still open. While statistical practice is routinely per-
formed in many research fields, a close collaboration between statisticians and
clinicians, sociologists, etc. remains essential. Awareness needs to be provided
when analyzing complex data with traditional techniques. This can be achieved
by providing personal coaching activities, offering fundamental and advanced
courses in statistics and data science, developing user-friendly software packages
and setting-up close collaborations with statisticians.



Summary

The presence of longitudinal and/or hierarchical data structures in many fields
(e.g., biomedicine, sociology, psychology, etc.) often imply the need for advanced
statistical modeling strategies. These frameworks need to account for the under-
lying correlation structure, while still preserving simplicity in their interpretation.
In this manuscript, focus is laid on models for counts and time-to-event outcomes.

In practice, these responses are traditionally modeled with members of the
so-called exponential family, making them restricted in use due to their predefined
mean-variance relation. There are two main reasons for expanding this family or
propose alternative frameworks, i.e., (1) the occurence of dispersion, meaning
that the variability of the data is not sufficiently captured under the assumed
model, and (2) the longitudinal/hierarchical structure of the data. In the former
one, the variance of the data can exceed or undervalue the predefined variance
in the model, referred as over- and underdispersion, respectively.

To account for both, Molenberghs et al. (2007, 2010) proposed the so-called
combined modeling framework through the inclusion of two distinguish sets of
random effects within the exponential family. Maximum likelihood with partial
marginalization is routinely applied to obtain inferences, implying subject-specific
interpretations on their parameters even though this is not always preferred. A
study may, for example, aim to investigate a treatment effect on the population
rather than the treatment effect on a particular subject. Efendi et al. (2014)
constructed a marginalized version of the combined model for time-to-event out-
comes to obtain population-averaged interpretations for the fixed effects, while
still maintaining a subject-specific interpretation for the random effects parame-
ters.

By using two case studies originating from an observational demographic (so-
ciological) and a randomized, double-blinded, parallel group multi-center (clin-
ical) study, existing models were initially considered in the analyses. Boundary
problems in the estimation procedure were detected in the sociological study,

85



86 Summary

and linked with the possible presence of underdispersion within the data. Al-
ternative univariate and hierachical models for counts have been proposed that
easily allows the fit of both under- and overdispersion, and/or longitudinal/hier-
archical discrete data. An extended family of discrete finite mixtures was con-
structed, and applied to the sociological study. Significant improvements on
several goodness-of-fit quantities like AIC and BIC were observed, underscoring
the practical relevance of this extension. An extended discrete Weibull model is
considered to analyze both studies. Random effects were entered in the model
to address the hierarchical/longitudinal structures of the data. Results show sig-
nificant improvements in goodness-of-fit measures in comparison with traditional
models, while remaining simplicity in their interpretation.

To conclude, a second-order moment-based estimation approach is proposed
that enables the marginal estimation of negative values for the random effects pa-
rameters originating from Poisson mixed-effects models, therefore lifting bound-
ary issues in classical estimation approaches such as partial marginalization.
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Supplementary Material for Chapter 2

S.1 Pseudo-likelihood Estimation for the Plackett-
Dale Model

The pseudo-likelihood estimator Φ̂ is defined as the maximizer of Eq. (2.1).
Consistency and asymptotic normality results (le Cessie and Van Houwelingen,

1994; Arnold and Strauss, 1991; Geys et al., 1999) imply that Φ̂ converges

in probability to the true parameter value Φ0, and
√
N(Φ̂ − Φ0) converges in

distribution to Np(0, J(Φ0)−1K(Φ0)J(Φ0)−1) with J(Φ) a p × p matrix with
rl-elements

Jr` = −
∑

(s,t)∈S

EΦ

(
∂2 ln fTs,Tt(tis, tit)

∂φr∂φ`

)
, (S.1)

and K(Φ) a p× p matrix with rl-elements

Kr` =
∑

(s,t)∈S

EΦ

(
∂ ln fTs(tis, tit)

∂φr
· ∂ ln fTt(tis, tit)

∂φ`

)
. (S.2)

Due to the presence of θ, the PD model allows us to estimate and inter-
pret the strength of the association between a pair of survival times Tr and T`,
through global cross ratios (the θ parameters in the model). The global cross-
ratio θr`(tr, t`) can depend on time as well as on covariates. In the standard
definition of Plackett, this is presumed constant for a given covariate combina-
tion. Generally, the cross-ratio is defined as:

θr`(tr, t`) =
FTr,T` · [1− FTr − FT` + FTr,T` ]

[FTr − FTr,T` ] · [FT` − FTr,T` ]
. (S.3)

θ = 1 corresponds to independence and ranges from 0 to +∞. The log odds
ratio is often utilized to avoid range restrictions and for which, due to symmetry,

S.1
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standard errors are more readily interpretable. All plots will be based on the
log odds ratio. Nevertheless, it is often easier to work with a transformation
of θ such as Spearman’s ρ or Kendall’s τ . There exists a relationship between
Kendall’s τ and θ for any copula C(tr, t`, θ) (Genest and MacKay, 1986):

τ(θ) = 4

∫ 1

0

∫ 1

0

CTr,T`(tr, t`, θ)CTr,T`(dtr, dt`, θ)− 1. (S.4)

This relationship is independent of the marginal distributions and only de-
pends on the copula function CTr,T` (Schweizer and Wolff, 1981). Estimates and
confidence intervals, using the delta method, are accordingly easily obtained.
There is no closed-form for Kendall’s τ in the PD case and an estimate has to
be obtained directly from Eq. (S.4). We have developed a SAS IML 9.14 macro
to this effect. Nelsen (2007) provided more details on copulas and the relation-
ships between association measures. All macros pertaining to the model and test
statistics are available from the first author upon request.

The relationship between Spearman’s ρ and θ is (Tibaldi et al., 2004):

ρ(θ) =
θ + 1

θ − 1
− 2θ · ln θ

(θ − 1)2
. (S.5)

An estimate follows from ρ̂ = ρ(θ̂), with variance estimated using the delta
method. Figure 1 graphically displays the relationships between these three quan-
tities (θ, ρ, and τ). The (ρ, τ) plot shows an almost linear relationship. Depend-
ing on the context, one can choose any of these three quantities to study associ-
ation. By comparing Eq. (S.4) and Eq. (S.5), we observe that the computation
of τ is more complex given that it involves numerical integration. In contrast, ρ
is very easy to obtain by plugging the estimated value of θ into Eq. (S.5).

S.2 Test Statistics for the Plackett-Dale Model

This section summarizes work done by Geys et al. (1997).
The essential difference is that the pseudo-likelihood versions of the Wald,

score, or likelihood ratio statistics asymptotically do not follow a χ2 distribution.
These authors established appropriate asymptotic results. We will present the
tests sufficiently generally, so that they apply to any subvector φ of the parameter
vector. For example, θr` = 1 corresponds to independence between Tir and Ti`
and can be written as H0 : θr` − 1 = 0, 1 ≤ r < ` ≤ 3.

Assume we are interested in a hypothesis of the type H0 : ϕ = ϕ0 where
ϕ denotes a q-dimensional subvector of the p-dimensional vector of regression
parameters Φ and write Φ = (ϕ′, ζ ′)′. The tests will be discussed in turn.
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S.2.1 Wald Test Statistics

The asymptotic normality properties of the pseudo-likelihood estimators will be
utilized to construct this test. We use the next result:

W ∗ = N(ϕ̂−ϕ0)′Σ−1
ϕϕ(ϕ̂−ϕ0) ∼ χ2

q. (S.6)

Σϕϕ denotes the q× q submatrix of Σ = J−1KJ . The matrices J and K were
defined according to Eq. (S.1) and Eq. (S.2). The matrix Σ can be estimated

by using the pseudo-likelihood estimate Φ̂. The Wald statistic is very easy to
obtain and the more convenient one in cases where model fitting is very time
consuming. Fears et al. (1996) proved that it is highly sensitive to changes in
parameterization. For example, we can see, through the delta method, that the
value of the Wald statistic obtained for the hypothesis H0 : ϕ = 0 doubles
the one corresponding to H0 : ϕ2 = 0, where ϕ2 refer to the element-wise
squared terms of ϕ. When interest lies in [θ2]α with α > 0, for example, the
Wald test statistics is α−1 times the Wald statistic for θ2 (Fears et al., 1996).
Corresponding p-values also depend on the choice of α.

In this study, the fact that individual association parameters will be tested
implies ϕ0 = θr` and q = 1. W ∗ ∼ χ2

1 and the normal distribution on the square
root can be used to produce p-values.

S.2.2 Pseudo-score Test Statistics

This test is constructed by fitting the null model and it has the advantage over
the Wald test that it is invariant to reparameterization. Let us call U(Φ) the
pseudo-score vector, specifically the derivative of the log of the pseudo-likelihood;
and Uϕ(Φ) the q-dimensional subvector. An empirically corrected (e.c.) version
of this pseudo-score can be defined as

S∗(e.c.) =
1

N

[
Uϕ(ϕ0, ζ̂(ϕ0))′JϕϕΣ−1

ϕϕJ
ϕϕUϕ(ϕ0, ζ̂(ϕ0))

]
, (S.7)

where ζ̂(ϕ0) presents the maximum pseudo-likelihood estimator of ζ for ϕ equal
to ϕ0, Jϕϕ denotes the q×q submatrix of the inverse of J , and JϕϕΣ−1

ϕϕJ
ϕϕ

is evaluated under the null hypothesis. Under mild regularity conditions, S∗(e.c.) ∼
χ2
q. Rotnitzky and Jewell (1990) observed computational problems in the frame-

work of generalized estimating equations. An alternative model-based variant
was suggested:

S∗(m.b.) =
1

N

[
Uϕ(ϕ0, ζ̂(ϕ0))′JϕϕUϕ(ϕ0, ζ̂(ϕ0))

]
. (S.8)
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Its asymptotic distribution under H0 is given by
∑q

j=1 ηjχ
2
1(j) where χ2

1(j) are

all independent random variables with χ2
1 distribution and η1 ≥ η2 ≥ · · · ≥ ηq

are the eigenvalues of (Jϕϕ)−1Σϕϕ under H0.
To simplify calculations and to have a χ2

q distribution, an adjusted pseudo-
score statistic is proposed, similar to Rotnitzky and Jewell (1990):

S∗a(m.b.) = S∗(m.b.)/η̄, η̄ =

q∑
j=1

ηj/q. (S.9)

Rao and Scott (1987) and Roberts et al. (1987) have proposed several ad-
justments. One interesting feature of all tests is that, in the maximum likelihood
context, all eigenvalues are equal to one and therefore all three statistics coincide.
In our scalar case, S∗(m.b.) = S∗a(m.b.) holds because q = 1.

S.2.3 Pseudo-likelihood Ratio Test Statistics

Another proposal for testing H0 is based on likelihood ratio ideas:

G∗2 = 2[pl(Φ̂)− pl(ϕ0, ζ̂(ϕ0))] (S.10)

and is termed pseudo-likelihood ratio test statistic. The asymptotic distribution
of G∗ can be written as

∑q
j=1 ηjχ

2
1(j), with χ2

1(j) independently distributed ac-

cording to χ2
1 and η1 ≥ η2 ≥ · · · ≥ ηr the eigenvalues of (Jϕϕ)−1Σϕϕ under

H0, similar as before.
Similarly, Geys et al. (1997) defined a modified pseudo-score statistic:

G∗a
2 = G∗2/η̄, (S.11)

that can be approximated by χ2
q. It can be proven that the formulation of G∗2

is an approximation to a Wald test. The pseudo-likelihood ratio test needs more
time to compute, since the model ought to be fitted twice, for the reduced and
full models. Furthermore, it is generally known from pseudo-likelihood theory
that the Wald test embraces the lowest power. From a practical perspective,
however, preference is often given to the Wald test. Implementation of all test
statistics is carried out within the SAS IML procedure.
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S.3 SAS Code for Weibull-gamma-normal Model

/∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗
SOFTWARE: SAS 9.4.
OBJECTIVE: Analyzing Moerzeke data with the Weibull−gamma−normal

framework;
DATASET: Moerzeke data, containing information about 457 families;
VARIABLE DESCRIPTION:
− ID: Family ID;
− FamilyMember: Family member indicator, i.e., F = father,

M = mother, C = first born child;
− Sexnum: Binary indicator of the gender of first born child, i.e.,

1 = boy, 0 = girl;
− y: Discretized life expectancy of a household member;
AUTHOR: M. Luyts (L−Biostat);
∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗/
libname m ’C:\Users\u0106491\Desktop\Moerzeke data’;

/∗ Weibull model, via NLMIXED ∗/
proc nlmixed data=MoerzekeFinal trunc tech=newrap maxit=1000;

parms Beta 11=−0.113 Beta 12=−0.113 Beta 13=−0.113 Beta 21=−1.067
Beta 22=−0.899 Beta 23=−3.800 rho1=4.799 rho2=5.770
rho3=3.002 L1=−1.51 L2=−1.69 L3=0.457;

if FamilyMember=’M’ then rho=rho1;
else if FamilyMember=’F’ then rho=rho2;
else rho=rho3;
if FamilyMember=’M’ then lambda=exp(L1);
else if FamilyMember=’F’ then lambda=exp(L2);
else lambda=exp(L3);
if FamilyMember=’M’ then eta=Beta 11∗SexNum + Beta 21∗YearOfBirth;
else if FamilyMember=’F’ then eta=Beta 12∗SexNum + Beta 22

∗YearOfBirth;
else eta=Beta 13∗SexNum + Beta 23∗YearOfBirth;
expeta=exp(eta);
if FamilyMember=’M’ then ll=log(lambda)+log(rho)+(rho−1)∗log(Age t)

+eta−lambda∗(Age t∗∗rho)∗expeta;
else if FamilyMember=’F’ then ll=log(lambda)+log(rho)+(rho−1)∗log(Age t)

+eta−lambda∗(Age t∗∗rho)∗expeta;
else ll=log(lambda)+log(rho)+(rho−1)∗log(Age t)+eta−lambda∗(Age t∗∗rho)
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∗expeta;
model Age t ˜ general(ll);
estimate ”lambda1” exp(L1);
estimate ”lambda2” exp(L2);
estimate ”lambda2” exp(L3);

run;

/∗ Weibull−gamma model, via NLMIXED ∗/
proc nlmixed data=MoerzekeFinal trunc tech=newrap maxit=1000;

parms Beta 11=−0.113 Beta 12=−0.113 Beta 13=−0.113 Beta 21=−1.067
Beta 22=−0.899 Beta 23=−3.800 rho1=4.799 rho2=5.770
rho3=3.002 L1=0.21 L2=0.185 L3=1.58 alpha=459;

lambda1=exp(L1);
lambda2=exp(L2);
lambda3=exp(L3);
if FamilyMember=’M’ then eta=Beta 11∗SexNum + Beta 21∗YearOfBirth;
else if FamilyMember=’F’ then eta=Beta 12∗SexNum + Beta 22∗YearOfBirth;
else eta=Beta 13∗SexNum + Beta 23∗YearOfBirth;
expeta=exp(eta);
if FamilyMember=’M’ then ll=log(lambda1)+log(rho1)+(alpha+1)∗log(alpha)

+(rho1−1)∗log(Age t)+eta−(alpha+1)∗log(lambda1∗(Age t∗∗rho1)
∗expeta+alpha);

else if FamilyMember=’F’ then ll=log(lambda2)+log(rho2)+(alpha+1)
∗log(alpha)+(rho2−1)∗log(Age t)+eta−(alpha+1)∗log(lambda2
∗(Age t∗∗rho2)∗expeta+alpha);

else ll=log(lambda3)+log(rho3)+(alpha+1)∗log(alpha)+(rho3−1)∗log(Age t)
+eta−(alpha+1)∗log(lambda3∗(Age t∗∗rho3)∗expeta+alpha);

model Age t ˜ general(ll);
estimate ”lambda1” exp(L1);
estimate ”lambda2” exp(L2);
estimate ”lambda2” exp(L3);

run;

/∗ Weibull−normal model, via NLMIXED ∗/
proc nlmixed data=MoerzekeFinal trunc qpoints=50;

parms Beta 11=−0.113 Beta 12=−0.113 Beta 13=−0.113 Beta 21=−1.067
Beta 22=−0.899 Beta 23=−3.800 rho1=4.799 rho2=5.770
rho3=3.002 L1=0.21 L2=0.185 L3=1.58 sigma=1;

if FamilyMember=’M’ then rho=rho1;
else if FamilyMember=’F’ then rho=rho2;
else rho=rho3;
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if FamilyMember=’M’ then lambda=exp(L1);
else if FamilyMember=’F’ then lambda=exp(L2);
else lambda=exp(L3);
if FamilyMember=’M’ then eta=Beta 11∗SexNum + Beta 21∗YearOfBirth

+ b1;
else if FamilyMember=’F’ then eta=Beta 12∗SexNum + Beta 22∗YearOfBirth

+ b1;
else eta=Beta 13∗SexNum + Beta 23∗YearOfBirth + b1;
expeta=exp(eta);
if FamilyMember=’M’ then ll=log(lambda)+log(rho)+(rho−1)∗log(Age t)+eta

−lambda∗(Age t∗∗rho)∗expeta;
else if FamilyMember=’F’ then ll=log(lambda)+log(rho)+(rho−1)∗log(Age t)

+eta−lambda∗(Age t∗∗rho)∗expeta;
else ll=log(lambda)+log(rho)+(rho−1)∗log(Age t)+eta−lambda∗(Age t∗∗rho)

∗expeta;
model Age t ˜ general(ll);
random b1 ˜ normal(0, sigma∗∗2) subject=ID;
estimate ”lambda1” exp(L1);
estimate ”lambda2” exp(L2);
estimate ”lambda2” exp(L3);

run;

/∗ Weibull−gamma−normal model, via NLMIXED∗/
proc nlmixed data=MoerzekeFinal trunc tech=quanew qpoints=50 maxit=1000;

parms Beta 11=−0.113 Beta 12=−0.113 Beta 13=−0.113 Beta 21=−1.067
Beta 22=−0.899 Beta 23=−3.800 rho1=4.799 rho2=5.770
rho3=3.002 L1=0.21 L2=0.185 L3=1.58 alpha=459 sigma=1;

if FamilyMember=’M’ then rho=rho1;
else if FamilyMember=’F’ then rho=rho2;
else rho=rho3;
if FamilyMember=’M’ then lambda=exp(L1);
else if FamilyMember=’F’ then lambda=exp(L2);
else lambda=exp(L3);
if FamilyMember=’M’ then eta=Beta 11∗SexNum + Beta 21∗YearOfBirth

+ b1;
else if FamilyMember=’F’ then eta=Beta 12∗SexNum + Beta 22∗YearOfBirth

+ b1;
else eta=Beta 13∗SexNum + Beta 23∗YearOfBirth + b1;
expeta=exp(eta);
if FamilyMember=’M’ then ll=log(lambda)+log(rho)+(alpha+1)∗log(alpha)

+(rho−1)∗log(Age t)+eta−(alpha+1)∗log(lambda∗(Age t∗∗rho)
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∗expeta+alpha);
else if FamilyMember=’F’ then ll=log(lambda)+log(rho)+(alpha+1)

∗log(alpha)+(rho−1)∗log(Age t)+eta−(alpha+1)∗log(lambda
∗(Age t∗∗rho)∗expeta+alpha);

else ll=log(lambda)+log(rho)+(alpha+1)∗log(alpha)+(rho−1)∗log(Age t)+eta
−(alpha+1)∗log(lambda∗(Age t∗∗rho)∗expeta+alpha);

model Age t ˜ general(ll);
random b1 ˜ normal(0, sigma∗∗2) subject=ID;
estimate ”lambda1” exp(L1);
estimate ”lambda2” exp(L2);
estimate ”lambda2” exp(L3);

run;

/∗ Marginal Weibull−gamma−normal model, via NLMIXED∗/
proc nlmixed data=MoerzekeFinal trunc tech=quanew qpoints=50 maxit=1000;

bounds alpha>0;
parms Beta 11=−0.113 Beta 12=−0.113 Beta 13=−0.113 Beta 21=−1.067

Beta 22=−0.899 Beta 23=−3.800 rho1=4.799 rho2=5.770
rho3=3.002 L1=0.21 L2=0.185 L3=1.58 alpha=459 sigma=1;

if FamilyMember=’M’ then rho=rho1;
else if FamilyMember=’F’ then rho=rho2;
else rho=rho3;
if FamilyMember=’M’ then lambda=exp(L1);
else if FamilyMember=’F’ then lambda=exp(L2);
else lambda=exp(L3);
if FamilyMember=’M’ then eta=Beta 11∗SexNum + Beta 21∗YearOfBirth

+ b1 − sigma/2;
else if FamilyMember=’F’ then eta=Beta 12∗SexNum + Beta 22∗YearOfBirth

+ b1 − sigma/2;
else eta=Beta 13∗SexNum + Beta 23∗YearOfBirth + b1 − sigma/2;
expeta=exp(eta);
if FamilyMember=’M’ then ll=log(lambda)+log(rho)+(alpha+1)∗log(alpha)

+(rho−1)∗log(Age t)+eta−(alpha+1)∗log(lambda∗(Age t∗∗rho)
∗expeta+alpha);

else if FamilyMember=’F’ then ll=log(lambda)+log(rho)+(alpha+1)
∗log(alpha)+(rho−1)∗log(Age t)+eta−(alpha+1)∗log(lambda
∗(Age t∗∗rho)∗expeta+alpha);

else ll=log(lambda)+log(rho)+(alpha+1)∗log(alpha)+(rho−1)∗log(Age t)
+eta−(alpha+1)∗log(lambda∗(Age t∗∗rho)∗expeta+alpha);

model Age t ˜ general(ll);
random b1 ˜ normal(0, sigma∗∗2) subject=ID;
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estimate ”lambda1” exp(L1);
estimate ”lambda2” exp(L2);
estimate ”lambda2” exp(L3);

run;
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S.4 General Overview of Over- and/or Underdis-
persed Count Models

Due to the restricted mean-variance relationship of the Poisson log-linear GLM
models (i.e., E(Yi) = Var(Yi) ≡ λi, where Yi ∈ N, i = 1, . . . , n, is Poisson
distributed with parameter λi ∈ R≥0, the set of positive real numbers, and with
ln(λi) = x

′
i · β, where xi and β denote a p-dimensional vector of covariates

for ith observation and the associated parameter vector, respectively), various
extensions have been proposed in the literature (Breslow, 1984, Lawless, 1987,
Hinde and Demétrio, 1998) - and in what follows, some popular models will be
examined in more detail.

S.4.1 Quasi-Poisson Model

A straightforward modification, in the context of the exponential family, is to
allow the dispersion (scale) parameter, denoted by δ, to not be restricted to 1.
This leads us to Var(Yi) = δ · E(Yi), where δ > 1 and δ < 1 indicates over- and
underdispersion, respectively. This results in the so-called quasi-Poisson model
(Wedderburn, 1974), where the point estimates of β are identical to those of
the standard Poisson model, but standard errors are scaled by

√
δ resulting in

possible differences in inferences on covariates compared to the standard Poisson
model.

S.4.2 Negative Binomial Model

Another elegant way to provide flexibility is through a two-stage model. A popular
approach in this context is to assume that Yi | λi ∼ Poi(λi) and that the
parameter λi is itself a random variable with mean µi and variance σ2

i . By using
standard results on iterated expectations we have:

E(Yi) = µi, Var(Yi) = µi + σ2
i . (S.12)

S.11
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A popular specific distributional choice is λi ∼ Gamma(α, α−1), for reasons
of identiability (Duchateau and Janssen, 2007), leading to the negative bino-
mial (NB) model. Choosing the Gamma distribution has the advantage of (1)
satisfying the mean’s scale for count outcomes and (2) obtaining closed-forms
for the marginal mean and variance, and even for the entire marginal distribu-
tion (Molenberghs et al., 2007). The corresponding (marginal) probability mass
function, mean and variance of the model are equal to

P (Yi = yi | xi) =
Γ(yi + α−1)

Γ(yi + 1)Γ(α−1)

(
α−1

α−1 + λi

)α−1 (
λi

α−1 + λi

)y
,

with λi = ex
′
i·β, E(Yi) = λi, Var(Yi) = λi + α · λ2

i .

(S.13)

respectively (Lawless, 1987, Cameron and Trivedi, 1986). We should note that,
from a hierarchical/conditional viewpoint, only overdispersion can be examined
(since for a valid Gamma distribution α > 0).

S.4.3 Conway-Maxwell-Poisson Model

The Conway-Maxwell-Poisson (COM) model, first introduced by Conway and
Maxwell (1962), is suitable for analyzing count data that exhibit either over- or
underdispersion. Even though its existence has been known for several decades,
most research on this model was done during the last decade. Shmueli et al.
(2005), for example, investigated the statistical properties of the COM distri-
bution. While in a Bayesian context, Boatwright et al. (2006) developed the
conjugate distributions for the parameters of the COM distribution. The proba-
bility mass function of the model can be expressed as

P (Yi = yi | xi) =
1

Z(λi, τ)
· λyii

(yi!)τ
,

with λi = ex
′
i·β, Z(λi, τ) =

+∞∑
n=0

λni
(n!)τ

.

(S.14)

The domain of admissible parameters for which the probability mass function
above defines a probability distribution is (λi, τ) > 0, and 0 < λi < 1, τ = 0.
Some well-known discrete data models result from this. When τ equals 1, it
reduces to the standard Poisson model. When τ → +∞, the COM model
approaches a Bernoulli model with success parameter πi = λi

1+λi
. While if τ = 0

and λi < 1, the geometric model with success probability 1− λi is obtained. In
terms of dispersion, specific focus is put on the mean and variance functions and
the nature of the different dispersion regions can be found in Appendix S.8.2.
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The mean and variance can be approximated by

E(Yi) = λi
∂logZ(λi, τ)

∂λi
≈ λ

1/τ
i −

τ − 1

2 · τ
, Var(Yi) =

∂E(Yi)

∂logλi
≈ 1

τ
λ

1/τ
i . (S.15)

S.4.4 Double Poisson Model

The double Poisson (DP) model, based on the double-exponential family of
Efron (1986), has hardly been investigated and applied since its first introduction
three decades ago. Winkelmann (2008) and Hilbe (2011) indicated that the
normalizing constant is the bottleneck in applying the DP by showing that fitted
models with its normalizing constant approximated by Efron’s original method
are not exact. For these and other reasons, different approximations have been
proposed in the literature. A full discussion can be found in Zou et al. (2013).

The probability mass function of the DP model can be written as

P (Yi = yi | xi) = K(λi, φ) · φ1/2 · e−φ·λi · e−yi · yyii
yi!

·
(

e · λi
yi

)φ·yi
,

with λi = ex
′
i·β,

1

K(λi, φ)
≈ 1 +

1− φ
12 · φ · λi

·
(

1 +
1

φ · λi

)
.

(S.16)

where K(λi, φ) is the normalizing constant that is often close to 1. The corre-
sponding mean and variance can be approximated by

E(Yi) ≈ λi, Var(Yi) ≈
λi
φ
. (S.17)

Thus, the DP model allows for both overdispersion (φ < 1) and underdispersion
(φ > 1). While for φ = 1, the standard Poisson model results.

S.5 Proof of Dispersion for Discrete Exponential
Case

Theorem 2. Let Yi, i = 1, . . . , n, be (type 1) Discrete exponential distributed,
with λ > 0. Then, the distribution only allows for overdispersion and equidis-
persion (when λ→ +∞).

Proof. To prove it, three situations are examined:
1. E(Yi) > Var(Yi)?

e−λ

(1− e−λ)
>

e−λ

(1− e−λ)2
⇔ e−λ < 0 ⇒ ⊥
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2. E(Yi) = Var(Yi)?

e−λ

(1− e−λ)
=

e−λ

(1− e−λ)2
⇔ e−λ = 0 ⇒ λ→ +∞

3. E(Yi) < Var(Yi)?

e−λ

(1− e−λ)
<

e−λ

(1− e−λ)2
⇔ e−λ > 0 ⇒

√

Thus, the distribution only allows for overdispersion and equidispersion
(when λ→ +∞)!

S.6 Proof of Mean and Variance Convergence
for Discrete Weibull Case

Lemma 3 (d’Alembert’s ratio test). Let
∑+∞

n=0 an be an infinite serie,
and consider

L = lim
n→+∞

∣∣∣∣an+1

an

∣∣∣∣ .
1. If L < 1, then the series converges absolutely;

2. If L > 1, then the series diverges;

3. If L = 1 or the limit fails to exist, then the test is inconclusive.

Lemma 4 (Raabe–Duhamel’s test). Let an > 0 (∀n). Define

bn = n ·
(

an
an+1

− 1

)
.

If L = limn→+∞ bn exists, there are three possibilities:

1. If L > 1, then the series
∑+∞

n=0 an converges;

2. If L < 1, then the series
∑+∞

n=0 an diverges;

3. If L = 1, then the test is inconclusive.

Theorem 5. Let Yi, i = 1, . . . , n, be (type 1) DW distributed. Then, it can
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be shown that

E(Yi)

(
= µ =

+∞∑
n=1

qn
ρ

)
< +∞,

Var(Yi)

(
= 2 ·

+∞∑
n=1

n · qnρ − µ− µ2

)
< +∞.

Proof. A trivial proof can be conducted for ρ ≥ 1, since
∑+∞

n=0 q
nρ ≤

∑+∞
n=0 q

n =
(1 − q)−1,

∑+∞
n=0 n · qn

ρ ≤
∑+∞

n=0 n · qn, and the series
∑+∞

n=0 n · qn con-
verges. Indeed, using Lemma 3 with an = n · qn, it can easily be shown
that L < 1. For ρ < 1, Lemma 4 can be used, where an = n · [qnρ − q(n+1)ρ ]
and an = n2 · [qnρ − q(n+1)ρ ] are proper choices for E(Yi) and Var(Yi), respec-
tively.

Additionally, based on the integral test (Knopp, 1990) and assuming q = e−λ,
the following lower and upper boundaries can be obtained for the mean and
variance expression (∀t ∈ 1, 2, . . .):

E(Yi) ∈

[
t∑

n=1

qn
ρ

+

∫ +∞

t+1

qn
ρ · dn;

t∑
n=1

qn
ρ

+

∫ +∞

t

qn
ρ · dn

]

∈

[
t∑

n=1

e−λ·n
ρ

+
1

ρ · λ1/ρ
· Γ[1/ρ;λ · (t+ 1)ρ];

t∑
n=1

e−λ·n
ρ

+
1

ρ · λ1/ρ
· Γ(1/ρ;λ · tρ)

]
,

Var(Yi) ∈

2
t∑

n=1

nqn
ρ −

t∑
n=1

qn
ρ −

(
t∑

n=1

qn
ρ

)2

− 2

ρ · λ1/ρ
Γ(1/ρ;λ · tρ)

t∑
n=1

qn
ρ

− 1

ρ2 · λ2/ρ
[Γ(1/ρ;λ · tρ)]2 − 1

ρ · λ1/ρ
Γ(1/ρ;λ · tρ) +

2

ρ · λ1/ρ

·Γ[2/ρ;λ · (t+ 1)ρ]; 2
t∑

n=1

nqn
ρ −

t∑
n=1

qn
ρ −

(
t∑

n=1

qn
ρ

)2

− 2

ρ · λ1/ρ

·Γ[1/ρ;λ · (t+ 1)ρ] ·
t∑

n=1

qn
ρ − 1

ρ2 · λ2/ρ
· {Γ[1/ρ;λ · (t+ 1)ρ]}2

− 1

ρ · λ1/ρ
· Γ[1/ρ;λ · (t+ 1)ρ] +

2

ρ · λ1/ρ
· Γ(2/ρ;λ · tρ)

]
.



S.16 Supplementary Material for Chapter 3

S.7 SAS Code for Hierarchical Discrete Expo-
nential and Discrete Weibull Model

/∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗
SOFTWARE: SAS 9.4.
OBJECTIVE: Analyzing Moerzeke data with the DE and DW approach;
DATASET: Moerzeke data, containing information about 457 families;
VARIABLE DESCRIPTION:
− ID: Family ID;
− FamilyMember: Family member indicator, i.e., F = father,

M = mother, C = first born child;
− Sexnum: Binary indicator of the gender of first born child, i.e.,

1 = boy, 0 = girl;
− y: Discretized life expectancy of a household member;
AUTHOR: M. Luyts (L−Biostat);
∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗/
libname m ’C:\Users\u0106491\Desktop\Moerzeke data’;

/∗ Model from exponential case, via NLMIXED ∗/
proc nlmixed data=m.MoerzekeFinal;

parms beta0=−1 beta0X=−0.4 beta0XX=−0.4 beta1=−0.0134
beta1X=−0.018 beta1XX=−0.018 sigma=1;

if FamilyMember=’F’ then eta=beta0XX + beta1XX∗SexNum + u;
else if FamilyMember=’M’ then eta=beta0X + beta1X∗SexNum + u;
else eta=beta0 + beta1∗SexNum + u;
expeta=exp(eta);
ll=eta∗y − log(expeta + 1)∗y + log(1 − (expeta/(expeta+1)));
model y ˜ general(ll);
random u ˜ normal(0, exp(sigma)∗∗2) subject=id;
estimate ’random intercept’ exp(sigma);

run;

/∗ Model from Weibull case, via NLMIXED ∗/
proc nlmixed data=m.MoerzekeFinal;

parms beta0=−1 beta0X=−0.4 beta0XX=−0.4 beta1=−0.0134
beta1X=−0.018 beta1XX=−0.018 sigma=1 rho=1;

if FamilyMember=’F’ then eta=beta0XX + beta1XX∗SexNum + u;
else if FamilyMember=’M’ then eta=beta0X + beta1X∗SexNum + u;
else eta=beta0 + beta1∗SexNum + u;
lambda=log(exp(eta)+1) − log(exp(eta));
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if y=0 then prob=1 − exp(−1∗lambda);
else prob=exp(−1∗lambda∗(y∗∗rho))−exp(−1∗lambda∗((y+1)∗∗rho));
ll=log(prob);
model y ˜ general(ll);
random u ˜ normal(0, exp(sigma)∗∗2) subject=id;
estimate ’random intercept’ exp(sigma);

run;

S.8 Characteristic Indices for the Negative Bino-
mial, Conway-Maxwell-Poisson, and Double
Poisson Model

S.8.1 Negative Binomial Distribution
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Figure 2: Characteristic indices of the negative binomial distribution related
to the Poisson distribution.
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S.8.2 Conway-Maxwell-Poisson Distribution
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Figure 3: Characteristic indices of Conway-Maxwell-Poisson distribution re-
lated to the Poisson distribution.
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S.8.3 Double Poisson Distribution
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Figure 4: Characteristic indices of double Poisson distribution related to the
Poisson distribution.
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S.9 Derivation of the Boundaries of π1

Consider a mixture of 2 Poissons, i.e., Eq. (4.4). By utilizing constraint (4.3)
into this mixture, we get:

π1 ·
[
e−λ1λy1 − e−λ2λy2

]
≥ −e−λ2λy2, ∀y ∈ N. (S.18)

If e−λ1λy1 − e−λ2λy2 ∈ R+:

π1 ≥
−e−λ2λy2

e−λ1λy1 − e−λ2λy2
, ∀y ∈ N. (S.19)

If e−λ1λy1 − e−λ2λy2 ∈ R−:

π1 ≤
−e−λ2λy2

e−λ1λy1 − e−λ2λy2
, ∀y ∈ N. (S.20)

Thus, π1 is bounded by [R1, R2], where

R1 = max
∀y∈IN

{
e−λ2λy2

e−λ2λy2 − e−λ1λy1
| e−λ2λy2 − e−λ1λy1 ∈ IR−

}
, (S.21)

R2 = min
∀y∈IN


e−λ2λy2

e−λ2λy2 − e−λ1λy1︸ ︷︷ ︸
(X)

| e−λ2λy2 − e−λ1λy1 ∈ IR+

 . (S.22)

To obtain closed-form expressions for R1 and R2, the first derivate of (X)
w.r.t. y will be calculated:

S.21
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∂

∂y
[(X)] =

(?)︷ ︸︸ ︷
∂

∂y

(
e−λ2λy2

)
·(e−λ2λy2 − e−λ1λy1)− (e−λ2λy2)

(e−λ2λy2 − e−λ1λy1)2

·

(??)︷ ︸︸ ︷
∂

∂y

(
e−λ2λy2 − e−λ1λy1

)
(?)

∂

∂y

(
e−λ2λy2

)
= ln(λ2)e−λ2λy2

(??)
∂

∂y

(
e−λ2λy2 − e−λ1λy1

)
= ln(λ2)e−λ2λy2 − ln(λ1)e−λ1λy1

=
[ln(λ1)− ln(λ2)] · (e−λ2λy2e−λ1λy1)

(e−λ2λy2 − e−λ1λy1)2 . (S.23)

Thus, the first derivative of (X) is positive and negative for ln(λ1) > ln(λ2) and
ln(λ1) < ln(λ2), respectively.

This implies different scenarios:

Table S.1: Different scenarios.

↗ ↘
ln(λ1) > ln(λ2) ln(λ1) < ln(λ2)

[R1] e−λ2λy2 − e−λ1λy1 ∈ IR− (1) (3)
[R2] e−λ2λy2 − e−λ1λy1 ∈ IR+ (2) (4)

1.
e−λ2λy2

e−λ2λy2−e−λ1λy1
∈ IR− because e−λ2λy2 ∈ IR+. Thus,

R1 = lim
y→∞

e−λ2λy2
e−λ2λy2 − e−λ1λy1

= −e−λ2 · lim
y→∞

(
λ2

λ1

)y
e−λ1 − e−λ2

(
λ2

λ1

)y
= −e−λ2 · 0

e−λ1
= 0. (S.24)
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2.
e−λ2λy2

e−λ2λy2−e−λ1λy1
∈ IR+ because e−λ2λy2 ∈ IR+. Thus,

R2 =
e−λ2λy2

e−λ2λy2 − e−λ1λy1

∣∣∣∣
y=0

=
e−λ2

e−λ2 − e−λ1
. (S.25)

3.
e−λ2λy2

e−λ2λy2−e−λ1λy1
∈ IR− because e−λ2λy2 ∈ IR+. Thus,

R1 =
e−λ2λy2

e−λ2λy2 − e−λ1λy1

∣∣∣∣
y=0

=
e−λ2

e−λ2 − e−λ1
. (S.26)

4.
e−λ2λy2

e−λ2λy2−e−λ1λy1
∈ IR+ because e−λ2λy2 ∈ IR+. Thus,

R2 = lim
y→∞

e−λ2λy2
e−λ2λy2 − e−λ1λy1

= e−λ2 · lim
y→∞

1

e−λ2 − e−λ1

(
λ1

λ2

)y
= e−λ2 · 1

e−λ2
= 1. (S.27)

S.10 Proof that [0, 1] ⊂ [R1, R2] (∀λ1, λ2;λ1 6= λ2)

Theorem 6. Given boundaries (4.7) for π1. Then, [0, 1] ⊂ [R1, R2] (∀λ1, λ2;
λ1 6= λ2).

Proof. To prove this, one need to show that (1) e−λ2

e−λ2−e−λ1
> 1 if λ1 > λ2

and (2) e−λ2

e−λ2−e−λ1
< 0 if λ1 < λ2. Since the e−x is a monotonic decreasing

function bounded between 0 and 1 for all x ∈ IR+, λ1, λ2 ∈ IR+:

1. λ1 > λ2 :

e−λ2 − e−λ1 < e−λ2 ⇔ e−λ2

e−λ2 − e−λ1
>

e−λ2

e−λ2
= 1 (S.28)

2. λ1 < λ2 :

e−λ1 − e−λ2 > 0⇔ e−λ2

e−λ2 − e−λ1
=

−e−λ2

e−λ1 − e−λ2
< 0 (S.29)
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S.11 Fitted Univariate & Finite Mixture Models

S.11.1 Fitted Univariate Models

Figure 5: Moerzeke data. Bar charts of fitted univariate models.
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S.11.2 Fitted Finite Mixture Models with Similar Compo-
nents

Figure 6: Moerzeke data. Bar charts of fitted finite mixture models with
similar components.
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S.11.3 Fitted Finite Mixture Models with Different Com-
ponents

Figure 7: Moerzeke data. Bar charts of fitted finite mixture models with
different components.
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S.12 Marginal Moments (up to the fourth order)
of the Poisson-normal Model

S.12.1 Non-central Moments

E (Yij) = E [E (Yij | bi)] = ex
′
ijβ+ 1

2
z
′
ijDzij ≡ µij, (S.30)

E
(
Y 2
ij

)
= E

[
E
(
Y 2
ij | bi

)]
= e2x

′
ijβ+2z

′
ijDzij + ex

′
ijβ+ 1

2
z
′
ijDzij , (S.31)

E
(
Y 3
ij

)
= E

[
E
(
Y 3
ij | bi

)]
= e3x

′
ijβ+ 9

2
z
′
ijDzij + 3e2x

′
ijβ+2z

′
ijDzij + ex

′
ijβ+ 1

2
z
′
ijDzij ,

(S.32)

E
(
Y 4
ij

)
= E

[
E
(
Y 4
ij | bi

)]
= e4x

′
ijβ+8z

′
ijDzij + 6e3x

′
ijβ+ 9

2
z
′
ijDzij + 7e2x

′
ijβ+2z

′
ijDzij

+ ex
′
ijβ+ 1

2
z
′
ijDzij . (S.33)

S.12.2 Central Moments

E (Yij − µij) = 0, (S.34)

E
[
(Yij − µij)2] = e2x

′
ijβ+2z

′
ijDzij + ex

′
ijβ+ 1

2
z
′
ijDzij − e2x

′
ijβ+z

′
ijDzij

= µij + µ2
ij

(
ez
′
ijDzij − 1

)
(S.35)

E
[
(Yij − µij)3] = e3β

(
e

9
2
z
′
ijDzij − 3e

5
2
z
′
ijDzij + 2e

3
2
z
′
ijDzij

)
+ 3e2β(e2z

′
ijDzij − ez

′
ijDzij) + eβ+ 1

2
z
′
ijDzij , (S.36)

E
[
(Yij − µij)4] = e4x

′
ijβ
(

e8z
′
ijDzij − 4e5z

′
ijDzij + 6e3z

′
ijDzij − 3e2z

′
ijDzij

)
+ e3x

′
ijβ
(

6e
9
2
z
′
ijDzij − 12e

5
2
z
′
ijDzij + 6e

3
2
z
′
ijDzij

)
+ e2x

′
ijβ
(

7e2z
′
ijDzij − 4ez

′
ijDzij

)
+ ex

′
ijβ+ 1

2
z
′
ijDzij . (S.37)

S.27
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S.13 Second-order Estimating Equations for the
Poisson Mixed Approach with Random In-
tercept

The score equations for the Poisson mixed approach of Section 5.3.1 are expressed
as follows:

Q(Θ) =
∑
i

P
′

iΣ
−1
i fi

=
∑
i

[∂µi
∂β

∂µi
∂d

∂ηi
∂β

∂ηi
∂d

]′ [
Var(Yi) Cov(Yi,Si)

Cov(Yi,Si) Var(Si)

]−1 [
Yi − µi
Si − ηi

]
= 0, (S.38)

where Θ = (β, d)
′
. Furthermore, the model-based and empirically corrected

standard errors of the parameter estimates are derived as the square root of the
diagonal entries of

U∗ =

[∑
i

P
′

iΣ
−1
i Pi

]−1

, (S.39)

U∗∗ = U∗

(∑
i

P
′

iΣ
−1
i fif

′

iΣ
−1
i Pi

)
U∗, (S.40)

respectively.

S.13.1 Components of the Second-order Estimating Equa-
tions

Let B = eβ and ∆ = e
1
2
d. Components of the score Eq. (S.38) are expressed as

follows:

µij = B∆, (S.41)

ηij = B2∆4 +B∆, (S.42)

∂µij
∂β

= B∆, (S.43)

∂µij
∂d

=
1

2
B∆, (S.44)

∂ηij
∂β

= B∆ + 2B2∆4, (S.45)
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∂ηij
∂d

=
1

2
B∆ + 2B2∆4, (S.46)

Var(Yij) = B2∆2(∆2 − 1) +B∆, (S.47)

Cov(Yij, Sij) = B2∆4(∆4 − 1) +B∆(3∆2 − 1) + 1, (S.48)

Var(Sij) = B4∆8(∆8 − 1) +B3∆5(6∆4 − 2) +B2∆2(7∆2 − 1) +B∆.
(S.49)

S.13.2 Solution of the Second-order Estimating Equations

By inserting Eq. (S.41)–(S.49) into the proposed score Eq. (S.38), the following
expression can be found:

Q(Θ) =
NB2∆2

det(Σi)
·

[
K11 K12

K21 K22

]
·



1

N

∑
i

∑
j

Yij︸ ︷︷ ︸
k1

−B∆

1

N

∑
i

∑
j

Y 2
ij︸ ︷︷ ︸

k2

−(B2∆4 +B∆)


= 0, (S.50)

with

K11 = B3∆7(∆4 − 1)2 +B2∆4(5∆2 − 1)(∆2 − 1) + 2B∆3, (S.51)

K12 = −B2∆4(∆2 − 1)2, (S.52)

K21 =
1

2
[B3∆7(∆4 − 1)(∆4 − 3) +B2∆4(5∆4 − 12∆2 + 3)], (S.53)

K22 =
1

2
[−B2∆4(∆2 − 3)(∆2 − 1) + 2B∆3]. (S.54)

Solving these equations results in the following equations:{
B2 =

k4
1

k2−k1

∆2 = k2−k1

k2
1

⇒

{
β̂ = 2ln(k1)− 1

2
ln(k2 − k1)

d̂ = ln(k2 − k1)− 2ln(k1)
. (S.55)

Thus, to capture the estimates of β of d, non-central sample first- and second-
order moments are needed in this approach, i.e., k1 and k2, respectively.
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S.13.3 Model-based and Sandwich Standard Errors of the
Second-order Estimating Equations

To obtain the model-based and sandwich standard errors, a PROC IML macro
has been written, where the input values are the given non-central first, second,
third and fourth moment of the data, i.e., k1, k2, k3, and k4, respectively, and the
output derived consists of (1) the parameter estimates obtained from the score
equation, (2) model-based and sandwich standard errors for these estimates.

/∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗
SOFTWARE: SAS 9 . 4 .
OBJECTIVE : Deve lop a SAS IML macro to o b t a i n t h e

p a r a m e t e r e s t i m a t e s , model−based and sandwich
s t a n d a r d e r r o r s o f GEE2 ;

INPUT :
− N: Sample s i z e ;
− k1 : Non−c e n t r a l f i r s t −o r d e r sample moment ;
− k2 : Non−c e n t r a l second−o r d e r sample moment ;
− k3 : Non−c e n t r a l t h i r d−o r d e r sample moment ;
− k4 : Non−c e n t r a l f o u r t h−o r d e r sample moment ;
OUTPUT: L i s t o f p a r a m e t e r s , c o n s i s t i n g o f
( 1 ) E s t i m a t e o f b e t a ( b e t a hat ) ;
( 2 ) E s t i m a t e o f d ( d hat ) ;
( 3 ) Model−based s t a n d a r d e r r o r o f b e t a ( s e mb b e t a ) ;
( 4 ) Sandwich s t a n d a r d e r r o r o f b e t a ( s e sandwich b e t a ) ;
( 3 ) Model−based s t a n d a r d e r r o r o f d ( s e mb d ) ;
( 4 ) Sandwich s t a n d a r d e r r o r o f d ( s e sandwich d ) ;
AUTHOR: M. L u y t s ( L−B i o s t a t ) ;
∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗/
%macro s c o r e PN(N, k1 , k2 , k3 , k4 ) ;

PROC IML ;
/∗Parameter e s t i m a t e s ∗/
b e t a hat=2∗ l o g (&k1 )−0.5∗ l o g (&k2−&k1 ) ;
d hat=l o g (&k2−&k1)−2∗ l o g (&k1 ) ;
/∗Model−based s t a n d a r d e r r o r s ∗/
B=exp ( b e t a hat ) ;
d e l t a=exp ( 0 . 5 ∗ ( d hat ) ) ;
A={1 0 . 5 , 1 0 . 5 } ;
C={0 0 , 1 1} ;
D=(B∗ d e l t a ∗A)+(2∗ (B∗∗2)∗ ( d e l t a ∗∗4)∗C ) ;
Sigma11=(B∗ d e l t a ∗ ( ( d e l t a ∗∗2)−1))+1;
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Sigma12 =((B∗∗2)∗ ( d e l t a ∗∗4)∗ ( ( d e l t a ∗∗4)−1))+(B∗ d e l t a
∗ ( ( 3 ∗ ( d e l t a ∗∗2))−1))+1;

Sigma22 =((B∗∗3)∗ ( d e l t a ∗∗7)∗ ( ( d e l t a ∗∗8)−1))+((B∗∗2)
∗ ( d e l t a ∗∗4)∗ ( ( 6 ∗ ( d e l t a ∗∗4))−2))+(B∗ d e l t a
∗ ( ( 7 ∗ ( d e l t a ∗∗2))−1))+1;

V={0 0 , 0 0} ;
V[ 1 , 1 ] = Sigma11 ;
V[ 1 , 2 ] = Sigma12 ;
V[ 2 , 1 ] = Sigma12 ;
V[ 2 , 2 ] = Sigma22 ;
Sigma=B∗ d e l t a ∗V ;
Q=&N#t (D)∗ i n v ( Sigma )∗D;
U s t a r=i n v (Q) ;
s e mb b e t a=s q r t ( U s t a r [ 1 , 1 ] ) ;
s e mb d=s q r t ( U s t a r [ 2 , 2 ] ) ;
/∗Sandwich s t a n d a r d e r r o r s ∗/
L11=&k2−(2∗B∗ d e l t a ∗&k1 )+((B∗∗2)∗ ( d e l t a ∗∗ 2 ) ) ;
L12=&k3−(B∗ d e l t a ∗&k2 )−((((B∗∗2)∗ ( d e l t a ∗∗ 4 ) )

+(B∗ d e l t a ) ) ∗&k1 ) + ( ( ( (B∗∗2)∗ ( d e l t a ∗∗ 4 ) )
+(B∗ d e l t a ) ) ∗B∗ d e l t a ) ;

L22=&k4−(2∗ ( ( ( B∗∗2)∗ ( d e l t a ∗∗4))+(B∗ d e l t a ) ) ∗&k2 )
+((((B∗∗2)∗ ( d e l t a ∗∗4))+(B∗ d e l t a ) ) ∗∗ 2 ) ;

L={0 0 , 0 0} ;
L [ 1 , 1 ] = L11 ;
L [ 1 , 2 ] = L12 ;
L [ 2 , 1 ] = L12 ;
L [ 2 , 2 ] = L22 ;
K=&N#L ;
U s t a r s t a r=U s t a r ∗ t (D)∗ i n v ( Sigma )∗K∗ i n v ( Sigma )∗D∗U s t a r ;
s e sandwich b e t a=s q r t ( U s t a r s t a r [ 1 , 1 ] ) ;
s e sandwich d=s q r t ( U s t a r s t a r [ 2 , 2 ] ) ;
p r i n t b e t a hat d hat s e mb b e t a s e sandwich b e t a

s e mb d s e sandwich d ;
q u i t ;

%mend ;


