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Abstract

Non-Gaussian outcomes are often modeled using members of the so-called exponential
family. Notorious members are the Bernoulli model for binary data, leading to the classi-
cal logistic regression, and the Exponential model for time-to-event data. However, limi-
tations arises when complex data structures are present, indicating a need for extending
this family. Two main reasons for this extension are (1) the occurrence of overdispersion,
meaning that the variability in the data is not adequately described by the models, which
often exhibit a prescribed mean-variance link, and (2) the accommodation of hierarchical
structure in the data, stemming from clustering in the data which, in turn, may result
from repeatedly measuring the outcome, for various members of the same family, etc. To
accommodate both issues simultaneously, the framework of Molenberghs et al (2010) is
proposed, where both complexities are accommodated through two separate sets of ran-
dom effects, i.e., the so-called conjugate random effects at the level of the mean for the first
aspect and (2) normal random effects embedded within the lineair predictor for the sec-
ond aspect. Apart from model formulation, generic approximations for marginal model
elements, e.g., the marginal mean, variance and covariance, and the strong conjugacy
principle are explored.

Over the years, massive attention has grown for creating new time-to-event modeling
structures. Since an extra complexity arises in this setting, i.e., censoring, Molenberghs
et al (2014) included gamma and normal random effects in a Weibull model, to account for
overdispersion and between-subject effects, respectively, and additionally accounted for
censoring within two estimation methods, i.e., maximum likelihood with partial marginal-
ization and pseudo-likelihood. In this thesis, full attention is given on their proposed
methodology. Next to these fixed effects estimation, empirical bayes estimation are used
to explore estimation for the random effects.

Due to the flexible modeling structure, more complex clustering formats can easily be
taken into account with the use of the alternating imputation posterior algorithm (Efendi
and Molenberghs, 2013). Even though subject-specific interpretations are retrieved from
the fixed effects within the framework, population-averaged interpretations can still be
achieved by the use of a connector function. Furthermore, joint modeling structures can
easily be made within the framework, even in such a way that informative censoring, i.e,
an aspect that was quite difficult to take into account in the past, can be captured in the
modeling framework. Going even deeper in the setting of joint modeling, a conceptual
correspondence exists between the missing data setting, and joint modeling of longitudinal
and time-to-event outcomes (Njagi et al, 2013c), which makes the methodology quite
interesting to many researchers.. A characterization of missing at random is provided
within the missing data setting.
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Equivalent to other classical methodologies, diagnostic tools were (and still are) develop-
ment for the framework. First, the gradient function of Verbeke and Molenberghs (2013)
is discussed and used as simple graphical exploratory diagnostic tool to assess whether
the assumed random-effects distribution produces an adequate fit to the data, in terms
of marginal likelihood. While no additional computations, other than the computations
needed to fit the model, are required, its applicable to a wide range of models within the
framework, as long as the distribution for the outcomes conditional on the random effects
is correctly specified. Moreover, the function gives an indication on how a parametric
model can be improved in case of misspecification. Based upon the gradient function,
Efendi, Drikvandi, Verbeke and Molenberghs (2014) developed a simple diagnostic test
for the random-effects distribution in mixed models, where the function serves as basis
for the construction of the proposed formal test. Secondly, the detection of influential
observations is explored by the local influence paradigm of Rakhmawati, Molenberghs,
Verbeke and Faes (2014). Main advantage of this approach is the ease of interpretable
and computationally convenient expressions, not only highlighting influential subjects,
but also which aspect of their profile leads to undue influence on the model’s fit (Verbeke
and Lesaffre, 1998).

To end the theoretical discussion of this thesis, emphasis is placed on two principal ways
in which the proposed model extend beyond the data available, i.e., (1) the data may be
coarsened, i.e., what is actually observed is less detailed than what is planned, and (2)
the data may be augmented, i.e., the observed data are hypothetically but conveniently
supplemented with structures. A typically cause for the former one can be censoring,
while the latter structure can be random effects, implying that its reasonable to discuss
this for the proposed framework for time-to-event data. Both aspects together are re-
ferred as enriched data. The fitting of such methodologies combines evidence arising from
empirical data with non-verifiable model components, i.e., that are purely assumption
driven. Therefore, discretion of the potential dangers and pitfalls that follow from this
should be present in the analysis, indicating the importance of sensitivity analysis, i.e., a
methodology that studies how assumptions about unobservables, given the observables,
influence the inferences drawn. Moreover, to any given model, an entire class of mod-
els can be assigned, with all members producing the same fit to the observed data but
arbitrary regarding the unobservable parts of the enriched data.

The methodology is applied to survival data in children with asthma. A full analysis
is provided, in a way that all theoretical discussed aspects within the methodology are
conveniently applied and explored in detail. While some have already been analyzed in
previously published papers, others were totally new in research. Code and derivations
are found in the appendix, while a general conclusion is provided at the end.
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Samenvatting

In statistiek komt het vaak voor dat uitkomsten een niet-normaal verdeeld patroon ver-
tonen. Het analyseren van deze types wordt traditioneel gedaan met verdelingen uit
de zo-genaamde exponentiële familie, waarbij de Poisson voor aantallen en de Bernoulli
verdeling voor binaire data de meest gekende zijn. Door de aanwezigheid van complexere
structuren kan het voorkomen dat een slechte schatting wordt gevormd met deze modellen.
De nood aan uitbreidingen is daarom voorhanden. Twee redenen die een belangrijke rol
spelen bij deze conclusie zijn (1) de aanwezig van overdispersie, betekende dat de vari-
abiliteit in de data niet adequaat wordt beschreven door de modellen, welke vaak een
bepaalde gemiddelde-variantie link bevat, en (2) de mogelijke hiërarchische structuur in
de data, afkomstig door clusteringen in de data, welke op hun beurt, resulteert uit her-
haalde metingen van de uitkomst.

In het verleden is veel onderzoek verricht naar het vinden van gepaste, uitgebreidere mo-
delleringstechnieken die beide aspecten in rekening brengen. Terwijl deze twee aspecten
vaak afzonderlijk werden behandeld (Hinde en Demétrio, 1998ab; Verbeke et al, 2000;
Molenberghs et al, 2005), ontwikkelde Molenberghs et al (2010) een elegant raamwerk
dat de mogelijkheid biedt om beide aspecten gelijktijdig in rekening te brengen d.m.v.
twee afzonderlijke verzamelingen van random effecten, en zelfs apart te behandelen. Deze
twee random-effecten, ook wel conjugate en normale random-effecten genoemd, brengen
overdispersie en hiërarchische structuren in rekening door een directe imputatie op het
gemiddelde-level en binnen de lineaire predictor, respectievelijk. Naast de formulerin-
gen van het raamwerk, werden ook generieke benaderingen van de marginale elementen,
zoals het marginaal gemiddelde en variantie, behandeld, alsook het principe van sterke
conjugatie.

In deze thesis wordt specifieke focus gelegd op overlevingstijden. Aangezien de overle-
vingstijden, vaak gemodelleerd door de exponentiële verdeling (element uit de exponentiële
familie), een extra complexiteit met zich meebrengen, namelijk censurering, is het aanger-
aden om extra adaptaties te verrichten binnen het raamwerk van Molenberghs et al (2010),
die het mogelijk maken om censurering in rekening te brengen. Met deze gedachtengang
in plaats creeërde Molenberghs et al (2014) een raamwerk dat zowel overdispersie, hiërar-
chische structuren en censurering in rekening bracht door het raamwerk van Molenberghs
et al (2010) te adopteren, en censurering apart behandeld in twee schattingsmethoden:
(1) maximum likelihood met partiële marginalisatie en (2) pseudo-likelihood. Dit frame-
work, waarbij de Weibull-Gamma-Normal model vooreerst vermeld werd, wordt gebruikt
als basis beginsel in de discussie rond overdisperste, herhaalde overlevingstijden. Naast
het behandelen van de schattingstechnieken rond vaste effecten, is de ”empirical bayes”
schatting voorgesteld voor het schatten van de persoons-gebonden random effecten.
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Door de flexibele structuur van het raamwerk zijn vele uitbreidingen mogelijk voor onderzoek.
Bijvoorbeeld, complexere hiërarchische structuren kunnen gemakkelijk gemodelleerd worden,
door toevoeging van extra random effecten aan het model. Terwijl schattingen steeds
complexer en moeilijker worden voor stijgende random effecten, introduceerde Efendi
en Molenberghs (2013) het gebruik van het “alternating imputation posterior” algo-
ritme binnen deze setting. Verder, zowel persoons-gebonden interpretaties als populatie-
gemiddeld interpretaties kunnen verkregen worden in het model, mits implementatie van
een bepaalde connector functie. Terwijl men conventioneel persoons-gebonden interpre-
taties binnen het raamwerk krijgt, presenteerde Efendi, Molenberghs en Iddi (2014) een
manier om populatie-gemiddelde interpretaties te bekomen binnen het framework, d.m.v.
een connector functie. Het verhaal stopt hier zelfs niet. Naast univariate analyses, waar-
bij slechts 1 uitkomst wordt gemodelleerd, kunnen gezamenlijke analyses plaatsvinden,
waarbij verschillende types van uitkomsten tegelijkertijd worden gemodelleerd. In een
cardiologische studie, bijvoorbeeld, waarin onderzoekers gebruik maken van telemoni-
toring (een techniek waarmee patiënten vanop afstand worden gevolgd) om bloeddruk
te meten op dagelijkse basis, worden vaak gecombineerd met additionele gegevens zoals
hartslag en gewicht, naast tijd tot heropname. Gezamenlijke analyses kunnen gemakkelijk
toegepast worden in het framework, zelfs op een manier dat informatieve censurering in
rekening kan worden gebracht. Verder, Njagi et al (2013c) toonde aan dat een conceptueel
verband bestaat tussen de missing data methodologie en het gezamenlijk modelleren van
longitudinale uitkomsten en overlevingstijden, welke de methodologie interessant maakt
in verschillende statistische settings. Om de discussie hierover te beëindigen, wordt een
karakteristiek van ”missing at random” gegeven binnen de missing data setting.

Traditioneel, na het formuleren en beschrijven van een modelleringstechniek, wordt er
aandacht geschonken aan diagnostische testen. In context van het framework van Molen-
berghs et al (2014), worden zowel de gradient functie van Verbeke en Molenberghs (2013)
als het lokale invloed paradigma van Rakhmawati, Molenberghs, Verbeke en Faes (2014)
behandeld. Terwijl de eerste wordt gebruikt als grafisch verkennend diagnostisch hulp-
middel om te beoordelen of de veronderstelde random-effecten verdeling een voldoende
schatting produceert in termen van marginale kans, wordt detectie van invloedrijke obser-
vaties onderzocht door de tweede. Voor de gradient functie zijn geen extra berekeningen
nodig, anders dan de berekeningen om het model te schatten, en is toepasbaar op tal
van modellen binnen het voorgesteld framework, zolang de verdeling op de uitkomsten
conditioneel op de random effecten correct gespecificeerd is. Verder geeft deze een indi-
catie weer hoe het parametrisch model verbeterd kan worden in geval van misspecificatie.
Gebaseerd op deze functie, is een eenvoudige diagnostische test voor de random-effecten
verdeling voor gemengde modellen ontwikkeld (Efendi, Drikvandi, Verbeke en Molen-
berghs, 2014), waarbij de functie dient als basis voor de constructie van de voorgestelde
formele toetsstatistiek. Voor het lokale invloed paradigma worden invloedrijke observaties
gëıdentificeerd door interpreteerbare en computationeel logische uitdrukkingen. Verder
geeft de procedure weer welke aspecten in hun profiel leid tot invloedrijke resultaten in
de modelschatting (Verbeke and Lesaffre, 1998).

Om de theoretische discussie rond het framework te beëindigen, wordt er specifieke nadruk
gelegd op twee belangrijke manieren die samen zogenaamde verrijkte gegevens uitmaken.
Coarsening is één van de twee klassen, in de zin dat de gegevens op een minder fijn niveau
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worden opgemeten dan men in principe zou willen. Voorbeelden hiervoor zijn censu-
rering en onvolledige gegevens. De andere, ook wel augmentatie genoemd, is waar aan
gegevens structuren worden toegevoegd die niet worden geobserveerd doch het modelleren
faciliteren. Voorbeelden zijn random effecten en latente veranderlijken. In alle gevallen is
een deel van het model aangestuurd enkel door veronderstellingen en niet door gegevens.
De gevaren daarvan dienen ten volle onderkend (Verbeke en Molenberghs, 2010; Molen-
berghs et al, 2012). Het is daarom goed om te concluderen dat er naast goodness-of-fit
ook nood aan sensitiviteitsanalyse is.

Dit werk sluit af met een uitgebreide analyse van de astma dataset (Duchateau en
Janssen, 2008), waarbij alle theoretische aspecten in detail worden behandeld, en een
algemene conclusie rond het framework. Code en berekeningen worden ondergebracht in
de appendix.
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Chapter 1

General Introduction

1.1 Introduction

Life science studies often encompasses extended structures such as longitudinal collected
data, where subjects/patients are repeatedly measured over time, and hierarchical struc-
tures, originating from hierarchical designs, e.g., multi-centre trials, surveys with a geo-
graphical-hierarchical framework such as the Belgian Health interview, which have exten-
sively been studied in the past (Van Oyen et al, 1997; Van Oyen and Tafforeau, 1994).
Keeping these structures aside in statistical modeling frameworks are often insufficiently
in drawing valid conclusions, indicating the need of a modeling framework(s) that (per-
fectly) reflects the design of the study and results in much more reliable conclusions, for
survey research, surrogate marker and surrogate endpoint evaluation, clinical trials, etc.

Therefore, its suggestive to search for a flexible modeling framework that supersedes a
variety of currently available frameworks for complex data structures such as hierarchies.
Simple and user-friendly implementation strategies are advisable in standard software
packages, where model assessment and model diagnostics are available and simple to
implement. Principle treatments of incomplete data, especially when targeting human
study subjects, need to be available in the exploration, since life science studies are often
connected with lots of missing data. The framework should be able to model different
outcome types such as count, binary, continuous and time-to-event data, and, in case
of non-Gaussian outcomes, accommodate typical design features such as overdispersion,
zero-inflation, etc.

In the past, many modeling approaches have been proposed, which often can be placed
within the generalized linear modeling (GLM) framework (Nelder and Wedderburn 1972,
McCullagh and Nelder 1989, Agresti 2002), i.e., an unifying framework based on the
so-called exponential family distributions. While this framework is mainly (not for the
normally distributed outcomes, where the mean and variance are entirely separated from
each other) restricted with the so-called mean-variance relationship, i.e., the variance
is expressed as a deterministic function of the mean, extended frameworks need to be
developed that accommodates this restriction. For example, Hammami, Garcia and Nuel
(2013) showed that field-collected count data such as the number of parasites and the
number of leukocytes per high power field are inconsistent with the Poisson assumptions.
Failure to take this inconsistency into account in parasite and leukocyte counts may entail
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important misleading inferences when these data are related to other explanatory variables
(malariometric or environmental). Here, the inconsistency is referred as overdispersion,
i.e., the observed variation is greater than predicted by the model. However, it should
be noted that underdispersion, i.e., the observed variation is lower than predicted by the
mode, can occur as well.

In case of count and binomial data, for example, overdispersion may be caused by increased
in variation due to the omission of important unobserved covariates or the violation of
independent assumption when observations are correlated or are collected from clusters.
In case of purely binary data, hierarchies such as repeated measures or longitudinal data
need to be present in the data structure in order to violate the mean-variance link. In
practice, models like the negative-binomial model (Breslow, 1984; Lawless, 1987; Gardner
et al, 1995; Engel, 1984; Manton et al, 1981) and zero-inflated Poisson (ZIP) model (Lam-
bert, 1992; Hall, 2000) are often conducted for count data to overcome overdispersion.

Apart from the occurrence of over- or underdispersion, hierarchical structures imply the
presence of association between measurements on the same unit as well. Therefore, along-
side with the mean and variance function, the model should also include a proper reflection
of the association structure within the data. Aspects like between and within subject-
specific associations are crucial here. For non-Gaussian outcomes, the so-called generalized
linear mixed model (GLMM, Engel and Keen 1994, Breslow and Clayton 1993, Wolfinger
and OConnell 1993) has been suggested, and became a popular framework ever since in
dealing with hierarchical data structures. In this methodology, random effects are intro-
duced to capture the association structure and to some extent overdispersion. However,
dealing with overdispersion and hierarchical structures separately may fall short when
modeling the data (Molenberghs et al, 2007). Therefore, a combined modeling (CM)
framework was set up that encompasses both aspects at the same time, by the inclusion
of so-called conjugate random effects within the GLMM. Including all kinds of modeling
settings in their framework, focus is laid on the time-to-event setting.

In time-to-event data, an extra complexity occurs within the data, i.e., censoring, either
informative or non-informative. In the last decade, much research has been provided on
non-informative censoring, meaning that participants who drop out of a study should do
so due to reasons unrelated to the study. Informative censoring occurs when participants
are lost to follow-up due to reasons related to the study, e.g. in a study comparing disease-
free survival after two treatments for cancer, the control arm may be ineffective, leading
to more recurrences and patients becoming too sick to follow-up. On the other hand,
patients on the intervention arm can be completely cured by a treatment and may no
longer feel the need to follow-up. While popular models in time-to-event data, e.g., the
Cox proportional hazard model (Cox, 1972), almost invariable assume that the censoring
is non-informative or ignorable, bias results often occur. In clinical trials, for example, it
is often occurred that patients withdraw from the study. A possible reason is the better
conditional state of the patient at that moment, such that no further medical attention
is needed. In this case, the event that was proceeded before the censoring may have
a significant effect, and may increase the expected remaining lifetime. Lagakos (1979)
formulate an amount of examples where the assumption of non-informative censoring is
doubtable.
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To accommodate for non-informative censoring in the CM framework for time-to-event
data, Molenberghs et al (2014) derived a strategy that keeps the CM formulation un-
harmed and, at the same time, accounts for censoring by simple imputing them within
estimation approaches. However, unlike other frameworks, the CM framework also enables
the ability to accommodate informative censoring in a certain way. Here, for example,
informative censoring is taking into account in the CM framework for time-to-event data
by the use of a specific joint multilevel model, where censoring is captured by specific
correlated normal random effects.

Next to censoring, model interpretations differ. In the linear mixed model (LMM) for
continuous outcomes, a marginal interpretation is present for the parameter estimates,
even though a hierarchical has been employed. This is generally not the case for the
GLMM for non-Gaussian outcomes, where the subject-specific random effect is used to
capture between subject variability. Interpretation of fixed effect parameters are therefore
conditional on subject-specific random effects. Since the CM framework holds the same
reasoning, two different approaches can be explored, i.e., subject-specific/hierarchical and
population-averaged/marginal interpretations. While subject-specific interpretations are
often conducted in previously done research, Heagerty (1999) and Heagerty and Zeger
(2000) proposed a so-called marginalized multilevel model (MMM), which combines the
strength of the marginal and hierarchical models. Particularly, a direct marginal inter-
pretations is present on the effect of covariates.

In the past decade, massive attention has grown in joint modeling, where several outcomes
are modeled together in one particular model strategy. In life science applications, for
example, this is not very uncommon. Researchers often collect several kinds of outcomes
simultaneously in their studies, commonly of a mixed nature. For example, in toxicity
studies, no single standard endpoint exists to assess the toxicity or efficacy of the com-
pound of interest, but co-primary endpoints are available to assess the toxic effects or
the working of the compound. Modeling these endpoints jointly not only appeals to draw
overall inferences using all responses, it also captures the association among the endpoints,
implying the importance in extending standard, univariate methodologies Therefore, var-
ious joint modeling approaches have been developed in the past. For longitudinal and
time-to-event outcomes, a brief overview of methodologies can be found in Tsiatis and
Davidian (2004).

After formulating a specific methodology, diagnostic tools are needed to explore the as-
sessment of model fit. In case of the CM framework, different tools can be used. While
one mainly focuses on testing the misspecification of the used random-effects proposition,
influential observations can be explored as well. Model assessment diagnostics are cru-
cial in deriving right conclusions, and need to be taken into account when modeling the
data. For the CM framework, two very powerful tools have been developed in the last
two years, i.e., (1) the gradient function of Efendi, Drikvandi, Verbeke and Molenberghs
(2014), which serves as a graphical exploratory diagnostic tool to assess misspecification
of the random effects distribution, and (2) the local influence paradigm of Rakhmawati,
Molenberghs, Verbeke and Faes (2014), where influential observations can be detected in
a simple manner.

This thesis attempts to address a number of these complexities of study designs and of the
time-to-event data through the use of one specific member within the CM framework, i.e.,
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the Weibull-Gamma-normal (WGN) model. Next to a theoretical discussion, the model
is practically used to model the time to recurrence of an asthma attack in the asthma
dataset of Duchateau and Janssen (2008).

1.2 Aim of this thesis

The general purpose of this thesis is to develop a modeling framework encompassing
repeated, overdispersed time-to-event data, to offer some guidelines for future research.
Additionally to the model formulation, emphasis is placed on the underlying theoretical
study of the framework (e.g., to facilitate estimation and inferential methodology, even
in higher dimensional hierarchical structures; the derivation of key features, such as the
marginal parameters and correlation functions; the development of flexible joint hierarchi-
cal/marginalized models; formulating local influence diagnostics; developing goodness-of-
fit tools for the random-effects distribution; and mentioning general attention for enriched-
data problems and essential non-identifiability).

1.3 Outline

The thesis is organized as follows.

Motivating datasets are presented in Chapter 2. The aim of using this dataset is to
demonstrate the practical use of the proposed modeling approaches. In Chapter 3, key
ingredients of the modeling framework are considered in detail, where topics like the stan-
dard generalized linear model (in general case), extensions to overdispersion and mixed
modeling, e.g., linear mixed model (LMM) and generalized linear mixed model (GLMM),
are discussed in advance. These key ingredients are essential to understanding the basic
idea behind the combined model (CM), introduced by Molenberghs et al (2007), which
extends the classical GLMM by combining the normal random effects and the so-called
conjugate random effects into a single framework to simultaneously address correlation
in the hierarchical structures and overdispersion, respectively. Special attention of the
(hierarchical) combined model in the field of time-to-event outcomes (with incorporation
of censoring) is provided in Chapter 4, where a model formulation is given according
to the so-called strong conjugacy principle. Emphasis is placed on a number of estima-
tion strategies (e.g. maximum likelihood with partial marginalization (Molenberghs et
al, 2007), pairwise likelihood (Molenberghs et al, 2014; Efendi et al, 2013) and Bayesian
model fitting (Ghebretinsae et al, 2012) and coupled to the proposed combined model,
even in combined models with higher order hierarchical structures (by using the so-called
Alternating Imputation Posterior (AIP) algorithm (Efendi et al, 2013)).

In Chapter 5, we adapt the combined model from Chapter 4 to provide direct marginal
interpretation of the regression parameters, by proposing the so-called marginalized multi-
level model (Heagerty, 1999; Heagerty and Zeger, 2000). Emphasis is still on time-to-event
data. Apart from model formulation, estimation methods (both maximum likelihood and
pairwise likelihood) are discussed. A flexible joint multilevel modeling framework for
repeated, time-to-event data is discussed in Chapter 6, where subject-specific interpreta-
tions of the parameters are presented at first (formulated conditionally upon the random
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effects) and later on, extended to population-averaged interpretations of the parameters
by using the so-called marginalized multilevel model (MMM) from Chapter 5. The joint
model is aimed at modeling two outcomes that occur simultaneously as well as recogniz-
ing the relationship between the two outcomes. In this thesis, attention is given to the
so-called shared-parameter framework (SPM) for random effects (Tsiatis and Davidian,
2004; Verbeke et al, 2010; Rizopoulos, 2008, 2011, 2012a), which models the two outcomes
separately, conditionally upon the random effect, and merge them together with corre-
lated random effects (representing the relationship among the two outcomes). Specific
cases of this well thought-through framework are established in the repeated, overdis-
persed time-to-event setting, where at least one outcome is modeled with the proposed
hierarchical/marginal combined model from Chapters 4 and 5.

A common problem that often arises in research is that of missing data. This has led to
the development of selection, pattern-mixture, and shared-parameter missing data mod-
elling frameworks (Molenberghs and Kenward, 2007). These frameworks have further
been supplemented with characterizations of missing value mechanisms (Rubin, 1976;
Molenberghs et al, 1998; Creemers et al, 2011), under the missing completely at random
(MCAR), missing at random (MAR), and the missing not at random (MNAR) taxon-
omy. Given that models for missing data often make unverifiable assumptions about the
missing value mechanism, a recurring theme is that of sensitivity analysis (Verbeke and
Molenberghs, 2000; Molenberghs and Verbeke, 2005; Creemers et al, 2010). As assump-
tions regarding the missing value mechanism are varied, the stability of inferences, or
lack thereof, provides a guide on the caution with which the inferences need to be em-
braced. Undeniably, there is a strong connection between the missing data setting in a
longitudinal context, on the one hand, and the joint longitudinal and time-to-event set-
ting, on the other. Conceptually, the two settings actually correspond, but with an added
layer of complexity in the latter setting (Njagi et al., 2013c). The additional complexity
stems from the fact that data can now be coarsened in various ways: the longitudinal
sequence can be incomplete; the time-to-event outcome can be censored; both of these
can occur simultaneously. Coarsening refers to the phenomenon that data observed are
less refined than the, possibly counterfactual, full data. This conceptual correspondence
will be the focus of Chapter 7. We will take a slightly different perspective on joint models
than is prevalent in the literature, and argue that conceptually, the two settings actually
correspond. Based on this, we will build an extended shared random-effects survival-
longitudinal joint model, similar in spirit to that of Creemers et al (2011) in the context
of longitudinal data subject to missing observations, but now transposed to the current
more complex setting. Within the extended framework, we will provide a characterization
of MAR, consistent to the one in the missing data setting. We will then provide some
reflections on the complexity of model formulation in the extended setting. The extended
random effects structure will then be utilized for sensitivity analysis.

Routinely, after formulating and fitting a model, an assessment of the model fit and a
diagnostic analysis is advisable. In Chapter 8, the assessment of the distribution of the
random effects is argued in the proposed CM. Efendi et al (2013) provided a goodness-
of-fit test based on the gradient function, which will be discussed in detail. Additionally,
an appropriate test statistic is formulated, where, under the null-hypothesis, it is approx-
imated using bootstrap methods. Chapter 9, on the other hand, covers a local influence
diagnostics for the detection of influential subjects in the CM (Rakhmawati et al, 2014).
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At first, background of the general theory behind local influence is handled, while after-
wards, this is extended to the proposed CM.

Chapter 10 focuses on the problems of enriched data and the occurrence of non-identifiability.
In the former one, data may be coarsened and/or augmented, two different phenomena
which, together, constitute enriched data. Coarsened is that the actually observed data
is less detailed than what is planned (e.g. incomplete data, censoring survival data set-
tings, etc.), and augmented when the observed data are hypothetically but conventionally
supplemented with structures such as random effects. Fitting models for enriched data
combines evidence arising from empirical data with non-verifiable model components,
i.e., that are purely assumption driven. Potentially dangers can arise from this, in the
sense that an entire class of models can be assigned to any given model, with all of its
members producing the same fit to the observed data but arbitrary regarding the un-
observable parts of the enriched data. Non-identified parts can be replaced arbitrarily,
without altering the fit to the observed data but with potentially non-trivial consequences
for inferences and substantive conclusions (Verbeke and Molenberghs, 2010; Molenberghs
et al, 2012). Therefore, assumptions should be supported by substantive considerations
or be made part of a sensitivity analysis (Molenberghs et al, 2012), indicating that ac-
ceptable goodness-of-fit to the observed data (cf. Chapter 8) cannot be used as the sole
justification for the analysis.

Finally, after applying the theoretically discussed framework in practice (Chapter 11), a
global conclusion and outlook of this thesis will be given in Chapter 12.
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Chapter 2

Motivating Case Study

Since this thesis mainly focuses on time-to-event data, a prevention trial, where children
who are at a high risk of developing asthma are involved, is considered. A brief discussion
of this dataset is considered in Section 2.1, while analysis are done in Chapter 11.

2.1 Recurrent Asthma Attacks in Children

The asthma data have been studied in Duchateau and Janssen (2008), and take the
form of repeated time-to-event outcomes. Asthma is occurring more and more frequently
in very young children, i.e., between 6 and 24 months. Therefore, a new application
of an existing anti-allergic drug is administered to children who are at higher risk for
developing asthma in order to prevent it. A prevention trial is set up with such children
randomized to placebo or experimental drug, and the asthma events that developed over
time are recorded in a diary. Typically, a patient has more than one asthma event. The
intermittent events are thus clustered within a patient and ordered in time. The data are
presented in a calendar time format, where the time at risk for a particular event is the
time from the end of the previous event (asthma attack) to the start of the next event
(start of the next asthma attack). A patient has different periods at risk throughout
follow-up, which are separated either by an asthmaic event that lasts one or more days,
or by a period in which the patient was not under observation. The start and end dates of
each such risk period are required, together with the status indicator to denote whether
the end of the risk period corresponds to an asthma attack or not. Data for the first
patient are listed in Table 2.1.
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Table 2.1: Asthma data. The first four data points for the first two children, where
column labeled ’Status’ refers to whether (1) or not (0) censoring occurred.

Patient ID Begin End Status Drug
1 0 15 1 0
1 22 90 1 0
1 96 325 1 0
1 329 332 1 0
2 0 180 1 1
2 189 267 1 1
2 273 581 1 1
2 582 600 0 1
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Chapter 3

Overview of the Key Ingredients

In this chapter, an overview is provided of the key ingredients in the development of
our proposed CM. These ingredients are a useful general tool for fully understanding
the developed modeling framework (Molenberghs et al, 2010), and all its corresponding
special cases, such as dealing with overdispersion and to account for data hierarchies,
such as longitudinal (repeated over time) data, separately, without changing much in the
terminology of the framework.

In Section 3.1, a description is given of the conventional exponential family and general-
ized linear modeling (GLM) (Nelder and Wedderburn 1972, Agresti 2002), which serves
as basic building block in the development of the CM. Section 3.2 deals with models to
accommodate overdispersion (Hinde and Demétrio 1998ab). Verbeke et al (2000) and
Molenberghs et al (2005) introduced normal random effects to address dependency in
Gaussian and non-Gaussian outcomes, respectively, resulting in the so-called linear mixed
model (LMM) and generalized linear mixed model (GLMM). These modeling techniques
will be handled in Section 3.3, and increased importance is given to the latter one. Section
3.4 (main interest of this chapter) focuses on the combined modeling framework (intro-
duced by Molenberghs et al, 2000), incorporating a conjugate random effect and normal
random effect to simultaneously address correlation within repeated measures sequences
and overdispersion.

This chapter outlines a general framework for the CM, while specific attention is given to
the time-to-event setting in the next chapter (Chapter 4).

3.1 Standard Generalized Linear Models

The occurency of (non-)Gaussian outcomes is often encountered in many practical ap-
plications. For example, Huang et al (1983) used a non-Gaussian statistical model for
surface elevation of nonlinear random wave fields in the world of physics, while Jansen
(2010) analyzed, in the field of medical sciences, diffusion-weighted MR Imaging in head
and neck squamous cell carcinoma with a non-Gaussian model. Analyzing these outcomes
often happen with univariate generalized linear models (Nelder and Wedderburn, 1972;
McCullagh and Nelder, 1989; Jφrgensen, 1987), based on the so-called exponential family
distributions.
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A random variable Y follows an exponential family distribution if the density is of the
form

f(y) ≡ f(y | η, φ) = exp{φ−1 · [y · η − ψ(η)] + c(y, φ)}, (3.1)

for a specific set of of unknown parameters η (“natural parameter”) and φ (“dispersion
parameter”), and for known functions ψ(·) and c(·, ·).

After some straightforward derivations (Appendix A.1), it can easily be shown that

E(Y ) = µ = ψ′(η), (3.2)

Var(Y ) = σ2 = φ · ψ′′(η), (3.3)

implying a mean-variance relationship: σ2 = φ · ψ′′(η) = φ · ψ′′[ψ′−1(µ)] = φ · v(µ),
with v(·) = ψ′′(ψ′−1(·)) the so-called variance function, describing the mean-variance
relationship.

The exponential family embraces a lot of distributions. The best known are the normal
(for continuous data), binomial/Bernoulli (for binary data), Poisson (for count data) and
exponential (for time-to-event data) distribution. These distributions, along with their
exponential family elements, are extensively described in Molenberghs et al (2010). In
this thesis, emphasis is placed on the Weibull and Exponential distribution for modeling
time-to-event data. In the exponential case, one assumes

f(y) = ϕ · e−ϕ·y, (3.4)

with mean ϕ−1 and variance ϕ−2. In the Weibull case, this extends to

f(y) = ϕ · ρ · yρ−1 · e−ϕ·yρ , (3.5)

where the mean and variance are expressed by ϕ−1/ρ · Γ(ρ−1 + 1) and ϕ−2/ρ · [Γ(2 · ρ−1 +
1)− Γ(ρ−1 + 1)2], respectively.

A few comments are in place. First, the Weibull model does not belong to the exponential
family in a conventional sense, unless in a somewhat contrived fashion where Y is replaced
by Y ρ. Second, setting ρ = 1 in the Weibull case leads to the exponential time-to-event
distribution. Therefore, special attention is given to the more general Weibull distribution.
Third, the mean µ (through the function η) can depend on p-dimensional vectors of
covariate values xi for outcome Yi, with i = 1, . . . , N . More precisely, µi = h(ηi) = h(xi·ξ),
for a known function h(·) (= the inverse link function) and a vector of p fixed, unknown
regression coefficients ξ. The model is termed ‘generalized linear model ’(GLM), where the
link function h(·) = ψ′(·) is called the natural link function, in which case ηi = xi · ξ. For
the Weibull and exponential model, the decomposition ϕ = λ·eµ is often employed. In this
situation, while µ is a component of the mean function, it is in itself not equal to the mean.
Fourth, Γ(·) represents the gamma function in the mean and variance expressions. Fifth,
maximum likelihood or quasi-likelihood can be used for parameter estimation. When
quasi-likelihood methods are employed (McCullagh and Nelder, 1989; Wedderburn, 1974;
Molenberghs and Verbeke, 2005), no full distributional assumptions are made, but one
rather restricts to specifying the first two moments (3.2) and (3.3). In such an instance,
the variance function v(µ) can be chosen in accordance with a particular member of
the exponential family. If not, then parameters cannot be estimated using maximum
likelihood principles. Instead, a set of estimating equations needs to be specified, the
solution of which is referred to as the quasi-likelihood estimates.
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3.2 Overdispersion Models

One of the key features of the GLM framework and many of the exponential family
members is the so-called mean-variance relationship, where the variance is a deterministic
function (v(·)) of the mean. However, in many practical situations (for count and time-
to-event data, for example), this restriction is not in line with a particular set of data,
and may cause serious flaws in point and precision estimation and inference on important
parameters (Paul and Plackett, 1978; Cox, 1983; Breslow, 1990). This may lead to
incorrect conclusions; for instance, a treatment which does not have a significant effect
could be assessed as if it had an effect. Two phenomena can occur: overdispersion and
underdispersion. The former one arises when the observed variance from the data is
greater than the theoretical variance (restricted by the mean-variance relationship) from
the model, while the latter one is obtained when the observed variance is smaller than the
theoretical variance. In this thesis, emphasis is placed on overdispersion. For example,
Mwangi et al (2008) provide evidence for overdispersion in the distribution of clinical
malaria episodes in children.

To handle the problem of overdispersion, a number of extensions have been proposed.
Hinde and Demétrio (1998a, 1998b) provide general treatments of overdispersion, by
modifying the GLM. The most popular models to encounter overdispersion in many prac-
tical situations are the negative-binomial model (Breslow, 1984; Lawless, 1987; Gardner
et al, 1995; Engel, 1984; Manton et al, 1981) and zero-inflated Poisson model (Lambert,
1992; Hall, 2000) for count data and the beta-binomial model (Wilcox, 1981; Skellam,
1948) and Bahadur model (Bahadur, 1961; Molenberghs and Verbeke, 2005) for categor-
ical data. Indeed, Mwangi et al (2008) concluded that the pattern of clinical malaria
episodes follows a negative binomial distribution.

A natural and straightforward step is to allow the overdispersion parameter φ 6= 1, so that
(3.3) produces Var(Y ) = φ·v(µ). This is in line with the so-called moment-based approach,
but can also be engendered by fully parametric assumptions. Another, more convenient
route is through the so-called two-stage approach, i.e., by placing a distribution on the
model parameter (also known as a random effect). The principle behind this approach is
to consider a distribution for the outcome of interest, given the random effect f(yi | θi)
which, combined with a model for the random effect f(θi), produces the marginal model:

f(yi) =

∫
θ

f(yi | θi)f(θi)dθi. (3.6)

Until now, a general discussion was obtained for the latter approach. In case of time-
to-event data, where the Weibull and exponential distribution seems appropriate choices
for the hierarchical model, several extensions are possible. Often, preference is given to
Gamma conjugate random effects, also known as frailties (Duchateau en Janssen, 2008),
giving rise to the exponential-gamma and Weibull-gamma models. The model elements
are listed in Table 3.1. Choosing the Gamma distribution (with parameters α and β) has
the advantage of (1) satisfying the mean’s scale for time-to-event outcomes (Section 4.1)
and (2) obtaining closed forms for the marginal mean and variance, and even for the entire
marginal distribution (Molenberghs et al, 2010). The latter one arises from the concept
of conjugacy (Cox and Hinkley, 1974; Lee, Nelder, and Pawitan, 2006; Agresti, 2002).
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Informally, conjugacy refers to the fact that the hierarchical and random effects densities
have similar algebraic forms. Conjugate distributions produce a general and closed-form
solution for the corresponding marginal distribution. To be more precise, mathematically,
it can be said that the hierarchical and random effects densities are conjugate if and only
if they can be written in the generic forms

f(y | θ) = exp{φ−1 · [y · h(θ)− g(θ)] + c(y, φ)}, (3.7)

f(θ) = exp{γ · [ψ · h(θ)− g(θ)] + c∗(y, ψ)}, (3.8)

where g(θ) and h(θ) are functions, φ, γ and ψ are parameters, and the additional functions
c(y, φ) and c∗(y, ψ) are so-called normalizing constants. By using the two-stage approach
(3.6) with (3.7) and (3.8), it can be shown that the marginal model equals

f(y) = exp

[
c(y, φ) + c∗(y, ψ) + c∗

(
φ−1 + γ,

φ−1 · y + γ · ψ
φ−1 + γ

)]
, (3.9)

Table 3.1: Model elements for the Weibull-gamma and exponential-gamma models

Element Notation Exponential-gamma Weibull-gamma
Hier. model f(y | θ) ϕ · e−ϕ·y ϕ · ρ · yρ−1 · e−ϕ·yρ

RE model f(θ) θα−1·e−θ/β
βα·Γ(α)

θα−1·e−θ/β
βα·Γ(α)

Marg. model f(y) ϕ·α·β
(1+ϕ·β·y)α+1

ϕ·ρ·yρ−1·α·β
(1+ϕ·β·yρ)α+1

h(θ) −θ −θ
g(θ) −ln(θ)/ϕ −ln(θ)/ϕ
φ 1/ϕ 1/ϕ
γ ϕ · (α− 1) ϕ · (α− 1)
ψ [β · ϕ · (α− 1)]−1 [β · ϕ · (α− 1)]−1

c(y, φ) ln(ϕ) ln(ϕ · ρ · yρ−1)

c∗(y, ψ)
(
γ+ϕ
ϕ

)
· ln(γ · ψ) + ln

[
Γ
(
γ+ϕ
ϕ

)] (
γ+ϕ
ϕ

)
· ln(γ · ψ) + ln

[
Γ
(
γ+ϕ
ϕ

)]
Mean E(Y ) [ϕ · (α− 1) · β]−1 Γ(α−ρ−1)·Γ(ρ−1+1)

(ϕ·β)1/ρ·Γ(α)

Variance Var(Y ) α · [ϕ2 · (α− 1)2 · (α− 2) · β2]−1 1
ρ·(ϕ·β)1/ρ·Γ(α)

· [2 · Γ(α− 2 · ρ−1)

·Γ(2 · ρ−1)− Γ(α−ρ−1)2·Γ(ρ−1)2

ρ·Γ(α)
]

If the time-to-event data corresponds to a hierarchical structure, with Yij denoting the
jth time-to-event outcome measured for cluster (subject) i, i = 1, . . . , N , j = 1, . . . , ni
and Yi the ni-dimensional vector of all measurements available for cluster i, then the
scalar θi becomes a vector θi = (θi1, . . . , θini), with E(θi) = µi and Var(θi) = Σi. In
line with the univariate case, the model produces E(Yi) = µi and Var(Yi) = Mi + Σi,
where Mi is a diagonal matrix with the vector µi along the diagonal. Note that a di-
agonal structure of Mi reflects the conditional independence assumption: all dependence
between measurements on the same unit stems from the random effects. Generally, a
versatile class of models results. For example, assuming that the components of θi are
independent, a pure overdispersion model follows, without correlation between the re-
peated measures. On the other hand, assuming θij = θi, that is, that all components are
equal, then Var(Yi) = Mi + σ2

i · Jni , where Jni refers to the (ni x ni)-dimensional unit
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matrix in the sense that all elements equal one. Such a structure can be seen as a gen-
eral version of compound symmetry. Of course, one can also combine general correlation
structures between the components of θi. Additionally, the proposed Weibull-gamma and
exponential-gamma model are derived for a two-parameter gamma density. In a gamma
frailty context (Duchateau and Janssen, 2007), it is customary to set αj ·βj = 1 (assuming
different parameters for each outcome j), for reasons of identifiability.

Until now, no attention has been given to the possible structures of the Gamma (conju-
gate) random effects in the Weibull-gamma and exponential-gamma model. Assuming a
scalar vector θi (Molenberghs et al, 2007; Aregay et al, 2013a), where the extra variation
is assumed constant over time, does not always provide the best choice and/or even may
not be satisfied in some cases. In addition, the dispersion parameter may be different
across groups. For example, in an experiment on salamander matings (McCullagh and
Nelder, 1989), Lin (1997) has studied whether or not there is heterogeneity in the mating
success probability among male and female salamanders, using a generalized linear model
with random effects. To attribute to the model more flexibility in terms of encompassing
multiple sources of variation, Aregay et al (2013c) extended the (combined) model to so-
called stratified overdispersion models, in terms of a Bayesian framework (Section 3.5.2).
The rest of this section is dedicated on this extended framework.

In case of the Weibull-gamma and exponential-gamma model, the prior distribution of
the overdispersion parameter is specified

θij ∼ Gamma(α, β), (3.10)

Here, the distribution of the overdispersion parameter is assumed to be the same across
all timepoints and/or other covariates in the model. Such an approach was followed by
Molenberghs et al (2007, 2010) within the frequentist framework, and by Aregay et al
(2013ab) within the hierarchical Bayesian framework. Aregay et al (2013c) formulated a
generalized model for θij that allows the distribution of the overdispersion parameter to
vary across covariate levels, by specifying the dependency of the Gamma distribution on
the covariates via a model for the hyper-parameters. Similar to a GLM (Section 3.1), the
generalized model for θij in the Weibull-gamma and exponential-gamma case has three
components: (1) a Gamma prior distribution of θij, (2) a link function g(·), and (3) a
linear predictor, used to model the dependency of the Gamma distribution on covariates
via parametrization of the hyper-parameters.

To stay in line with the followed terminology of Aregay et al (2013c), XOD denotes a
known design matrix and τ = (τ 1, τ 2) a parameter vector. The generalized model for θij
is then formulated by

θi ∼ Gamma(α,β), (3.11)

g(α) = XOD · τ 1, (3.12)

g(β) = XOD · τ 2, (3.13)

where g(·) is a chosen link function and XOD · τ 1, respectively XOD · τ 2, are the linear
predictors for the hyper-parameters of α, respectively β, in Gamma(α,β). For reasons of
identifiability, αj ·βj = 1 is assumed. Many different choices can be made for XOD and τ ,
depending on the research question of interest. Here, a few basic choices are considered.
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1. An unstructured time dependent Gamma distribution for the overdispersion par. θij

The aim is to model the dependency of the overdispersion parameter on time, by
defining time specific hyper-parameters τ 1 = (α1, α2, . . . , αT )

′
, τ 2 = (β1, β2, . . . , βT )

′

and the design matrix XOD specifies a (T x T )-dimensional identity matrix (T
is the number of time points). Thus, the distribution of θij is time dependent,
θij ∼ Gamma(αj, βj) (j = 1, 2, . . . , T ). Mathematically, for j = 1, 2, . . . , T ,

θij ∼ Gamma(αj, βj), (3.14)

(g(α1), g(α2), · · · , g(αT )) =


1 0 · · · 0
0 1 · · · 0
...

...
. . .

...
0 0 · · · 1

 · (α1, α2, . . . , αT )
′
, (3.15)

(g(β1), g(β2), . . . , g(βT )) =

[
g

(
1

α1

)
, g

(
1

α2

)
, . . . , g

(
1

αT

)]
. (3.16)

This choice describes the dependency of the Gamma distribution of θij on time
by specifying different (across time) prior distributions for θij (i.e., different hyper-
parameters in the Gamma distribution), and may cause overparameterization. There-
fore, careful consideration needs to be obtained for choosing this approach. Sensi-
tivity analysis (Section 10.2) can be an appropriate tool here.

2. A linear time dependent Gamma distribution for the overdispersion parameter θij

In this case, a linear dependency between αj and time is used, by defining the design
matrix XOD and hyper-parameter vector τ = (τ 1, τ 2), respectively,

XOD =


1 t1
1 t2
...

...
1 tT

, τ 1 = (α0, α1)
′
, and τ 2 = (β0, β1)

′
.

It has the advantages of (1) avoiding overparametrization and (2) having an easy
evaluation whether or not a linear time dependent overdispersion model is ap-
propriate for the given dataset by checking the 95% confidence interval for α1

and/or β1. Mathematically, formula (3.14) is kept, with g(α) = XOD · (α0, α1)
′

or g(αj) = α0 + α1 · tj in the first expression and g(β) = g(α−1) or g(βj) = g
(

1
αj

)
in the second one (j = 1, 2, . . . , T ).

3. A covariate dependent Gamma distribution for the overdispersion parameter θij

In many statistical areas, attention is given to whether or not covariates produce
a significant effect on the outcome. In this context, we allow GLM (3.11)–(3.13)
for inclusion of other covariates that might influence the Gamma distribution of
the overdispersion parameters. Often, especially in the medical area, researchers
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are interested in whether or not a treatment benefits significantly from a placebo
for patients i (i = 1, 2, . . . , N), which were followed over time with time points j
(j = 1, 2, . . . , ni). Modeling this into the GLM (3.11)-(3.13), a binary covariate Ii
(representing the treatment indication for a specific patient) is considered:

Ii =

{
1 if subject i received the treatment
0 otherwise

.

Supposing that the prior distribution of θij, i.e. (3.11), is now formulated by θij ∼
Gamma(αi, βi). Additionally, the dimension of α is not the number of time points
anymore but the number of treatment groups. Using these constraints, the model
takes the form:

θij ∼ Gamma(αi, βi), (3.17)

(g(α1), g(α2), · · · , g(αN)) =


I1 1− I1

I2 1− I2
...

...
IN 1− IN

 · (α1, α2)
′
, (3.18)

(g(β1), g(β2), . . . , g(βN)) =

[(
1

α1

)
, g

(
1

α2

)
, . . . , g

(
1

αN

)]
. (3.19)

4. A constant Gamma distribution for the overdispersion parameter θij

To conclude this discussion, an overview is given on the most easy choice (Molen-
berghs et al, 2007; Aregay et al, 2013a). Here, the distribution of θij is the same
across all time points, by specifying a (ni x ni)-dimensional identity matrix for the
design matrix and constant hyper-parameter τ 1 = (α, α, . . . , α)

′
. Hence, formula

(3.14) holds with g(α) = (α, α, . . . , α) and g(β) = g(α−1).

3.3 Models with Normal Random Effects

Alternatively, it is possible to include normal random effects in the linear predictor ηi of
the generalized linear model. In Section 3.1, this predictor is set equally to xi · ξ, i.e., a
general assumption that is often made in statistical analysis. Extending this with random
effects gives rise to the family of known as generalized linear mixed model (Thall and
Vail, 1990; Dean, 1991; Engel and Keen, 1994; Wolfinger and O’Connell, 1993; Verbeke
and Molenberghs, 2000; Molenberghs and Verbeke, 2005). It has the great advantages of
(1) taking into account the hierarchical and repeated (e.g. longitudinal) data structures,
by a single modeling framework and (2) exploring within-subject and between-subject
correlations from the data. Analyzing datasets with standard GLM models does not have
these advantages. For example, if a standard Poisson regression model is used to analyze
the number of epileptic seizures for hundred subjects, hundred Poisson regression models
are modeled separatly, without having the opportunity to explore between- and within-
subject correlations. By applying the Poisson linear mixed model, one model is used to
analyze this outcome, where the between- and within-subject correlations are taken into
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account by the random effects. Often, empirical Bayes estimation (Laird and Ware, 1982;
Schall, 1991) is used to estimate these correlations.

First, a discussion of the linear mixed model (LMM) is given, used for continuous repeated
measures, followed by the generalized linear mixed model (GLMM), which is the most
popular method for non-Gaussian repeated measures (e.g., count, binary, time-to-event,
etc.). The latter one is not only a relatively straightforward extension of the GLM for
independent data (Section 3.1) to the context of hierarchically organized data, on the
one hand, and the linear mixed model (Verbeke and Molenberghs, 2000), on the other
hand, but there is also a wide range of software tools available for fitting such models
(e.g. Broström, 2003; Littell, 2006; Faraway, 2006).

3.3.1 Linear Mixed Models

The LMM has become an important tool for the analysis of continuous longitudinal and/or
hierarchical data, by the inclusion of additional random effects in the linear predictor. The
distribution of these random effects are often assumed normal, due to conjugacy reasons
(3.7)–(3.8). In this thesis, normal random effects are assumed in the linear predictor ηi,
but keeping in mind that other possible choices can be made. Verbeke and Molenberghs
(2000) devoted an entire text to LMM, along with its extensions. A wide variety of
software packages are available for fitting the model, such as the SAS procedure MIXED
(Wolfinger and Chang, 1998; Littell et al, 2006), the SPlus function lme (Pinheiro and
Bates, 2000), the MLwiN package (Lawson et al, 2003; Rasbash et al, 2014), etc.

The LMM assumes that the ni-dimensional vector of repeated outcome measurements
Yi = (Yi1, Yi2, . . . , Yini) for cluster (subject) i, i = 1, . . . , N , follow a linear regression
model. The fixed regression parameters ξ represent a population-specific interpretation
(i.e., the same for all clusters), while the remaining parameters, i.e., the random effects
bi, are used for between-cluster interpretations. The LMM framework can generally be
expressed by

Yi = Xi · ξ + Zi · bi + εi, (3.20)[
bi
εi

]
∼ N

([
0
0

]
,

[
D 0
0 Σi

])
, (3.21)

where ξ is a (p x 1)-dimensional vector of unknown fixed parameters, bi is a (q x 1)-
dimensional vector of random effects, Xi and Zi are known design matrices with dimen-
sions of respectively ni x p and ni x q, εi is a (ni x 1)-dimensional vector of unobserved
measurement errors. Similar as before, N denotes the number of clusters (subjects), while
ni represents the number of repeated measurements for cluster (subject) i. Additionally,
the random effects bi and random error term εi are assumed to be independent from
each other, where bi follows a multivariate normal distribution with mean vector 0 and
variance-covariance matrix D and εi follows a normally distribution with mean vector 0
and variance-covariance matrix Σi.

Equivalently, the LMM formulation (3.20)–(3.21) can be re-expressed in a clear hierarchi-
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cal notation of the form

Yi | bi ∼ N(Xi · ξ + Zi · bi,Σi), (3.22)

bi ∼ N (0, D) , (3.23)

Due to conjugacy reasons (3.7)–(3.8), a closed form is adjusted for the marginal model
(Verbeke and Molenberghs, 2000):

Yi ∼ N(Xi · ξ,Zi ·D · Z
′

i + Σi), (3.24)

Though the marginal formulation (3.24) naturally follows from the hierarchical formu-
lation (3.22)–(3.23), both models are not equivalent. For an elaborate discussion about
the differences, reference is given to Verbeke and Molenberghs (2000). On top of this,
several structures are possible for Zi and bi, depending on the research question. Two
of the most frequently used models are the so-called random-intercept and random-slope
models, often employed in longitudinal structures (Zuur et al, 2007; Zeger and Liang,
1992).

1. The random-intercept model for Gaussian outcomes in a longitudinal, hierarchical
data structure

For simplicity, only two fixed effects ξ0 and ξ1 are assumed here. The former one de-
scribes the intercept, while the latter one represents the time-dependent coefficient.
Furthermore, the same assumptions are used as in (3.20)–(3.21). The hierarchical
random-intercept model for Gaussian outcomes in a longitudinal, hierarchical data
structure takes the form

Yi =

Yi1
...
Yini

 =

1 ti1
...

...
1 tini

 · (ξ0

ξ1

)
+

1
...
1

 · b0i +

 εi1
...
εini

 , (3.25)

[
bi
εi

]
∼ N


[

0
0

]
,


d

(
0 · · · 0

)0
...
0

 Σi


 . (3.26)

This is a specific case of the general LMM (3.20)–(3.21), in the sense that bi = b0i,
i.e., only one random effect b0i is used to capture the between-subject variability.
Here, the evolution over time stays constant for all subjects i.

2. The random-slope model for Gaussian outcomes in a longitudinal, hierarchical
data structure

Extending the random-intercept model (3.25)–(3.26) with an extra time-dependent
random effect b1i, gives rise to the so-called random-slope model. This model is
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formulated by

Yi =

Yi1
...

Yini

 =

1 ti1
...

...
1 tini

 · (ξ0

ξ1

)
+

1 ti1
...

...
1 tini

 · (b0i

b1i

)
+

 εi1
...
εini

 , (3.27)

(b0i

b1i

)
εi

 ∼ N


(0

0

)
0

 ,


D

(
0 · · · 0
0 · · · 0

)
0 0

...
...

0 0

 Σi



 . (3.28)

In this case, two random effects b0i and b1i are used for subject i. The former one
captures the between-subject variability, similar to the random-intercept model,
while the latter one is used to capture within-subject variability.

3.3.2 Generalized Linear Mixed Models

The LMM framework (for continuous clustered, repeated measures, and longitudinal stud-
ies, for example, or whenever there are data hierarchies) can easily be extended to the
standard GLM framework (Section 3.1), giving rise to the so-called GLMM (Engel and
Keen, 1994; Breslow and Clayton, 1993, Wolfinger and O’Connell, 1993) for non-Gaussian
repeated measurements within a hierarchical data structure. Similar to LMM, it accom-
modates the correlation between repeated measurements and hierarchical structure by
means of normal random effects in the linear predictor and to some extent for overdis-
persion as well, but uses the exponential family distribution (3.1) instead of the normal
distribution. The same terminology is adopted from Section 3.1 and 3.3.

Assume that, conditionally upon the q-dimensional random effects bi ∼ N (0, D), the
outcomes Yij are independent with exponential-family densities of the form

fi(yij | bi, ξ, φ) = exp{φ−1 · [yij · λij − ψ(λij)] + c(yij, φ)}, (3.29)

with

h−1[ψ
′
(λij)] = h−1(µij) = h−1[E(Yij | bi, ξ)] = ηij = x

′

ij · ξ + z
′

ij · bi, (3.30)

where xij and zij are p- and q-dimensional vectors of known covariate values, λij rep-
resents the natural parameter and ηij the linear predictor with random effect bi. Let
f(bi | D) be the density of the N(0, D) for the random effects bi. Often, unlike the
LMM, no closed forms are obtained for integral (3.6), nor for the corresponding moments
E(Y k

ij ) (k = 1, 2, 3, . . . ). When making inferences on these marginal models, a suite of
computational techniques, e.g., using Taylor series expansions (Hildebrand, 1962) and
numerical integration (Davis and Rabinowitz, 2007), has been derived to approximate
the marginal likelihood numerically (Molenberghs and Verbeke, 2005; Raudenbush et al,
2000; Wolfinger and Lin, 1997). The marginal likelihood function is given by

L(ϑ, D) =
N∏
i=1

[∫
b

(
ni∏
j=1

fij(yij | ϑ,bi) · f(bi | D)

)
· dbi

]
. (3.31)
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Here, ϑ groups all parameters in the conditional model for Yi, given the random ef-
fects. Alternatively, other estimation methods such as pairwise likelihood and Bayesian
estimation can be used. These estimation approaches are covered in Section 4 (for the
proposed hierarchical Weibull-gamma-normal model) and 5 (for the marginal Weibull-
gamma-normal model), for time-to-event data. Furthermore, local influence is described
from the marginal likelihood (3.27) for the specific Weibull-normal model (Section F.2).
It should be noted that the GLMM framework is a bit less common for survival data,
where so-called frailty models (Duchateau and Janssen, 2007), rather of the type with
conjugate random effects, are more standard.

3.4 Flexible Modeling Framework to Combine

Overdispersion and Normal Random-Effects

Although the GLMM from Section 3.3.2 accommodates the correlation between repeated
measures in a hierarchical data structure, even for some of the overdispersion as well,
limitations can arise. Booth et al (2003) and Molenberghs et al (2007) studied this model
and concluded that the formulated GLMM (3.29)-(3.30) often inadequately fits the data
in an overdispersed, repeated structure, where overdispersion and correlation between
repeated measurements can occur simultaneously. To deal with this issue, Molenberghs
et al (2007) extended the GLMM to a so-called combined model (CM), by including an
extra random effect. This random effect enters the mean directly as a multiplicative factor,
implying that mean scaling must be satisfied. For example, for time-to-event outcomes,
the inserted random effect must have support over the positive half line. Furthermore,
Molenberghs et al (2010) generalized this CM into the exponential family framework.
This elegant proposition is adopted, and will be specified and declared for time-to-event
data (Section 4 and 5).

Adding an extra random effect to the GLMM has the disadvantage of decreasing the
chance of having conjugacy among the chosen hierarchical and random effect distribu-
tions. To resolve this issue, like mentioned in Section 3.3.2, generic approximations can
be used to approximate marginal model elements (Molenberghs et al, 2010). These ap-
proximations for the CM are briefly discussed in Section 3.4.2, along with the principle
of strong conjugacy in the CM framework (Molenberghs et al, 2010).

3.4.1 General Model Formulation

Assume Yij to be the same as in Section 3.2. Combining both the overdispersion random
effects θi = (θi1, . . . , θini)

′
and normal random effects bi into the exponential family

framework (3.1) led Molenberghs et al (2010) to the general CM family:

fi(yij | bi, ξ,θi, φ) = exp{φ−1 · [yij · λij − ψ(λij)] + c(yij, φ)}, (3.32)

with conditional mean

µcij = E(Yij | bi, ξ, θij) = θij · κij, (3.33)
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where θij ∼ Υij($ij, σ
2
ij) for some distribution Υij, with mean $ij and variance σ2

ij, and

κij = h(ηij) = h(x
′
ij · ξ + z

′
ij · bi). Similar as before, bi is assumed to be normally

distributed with mean vector 0 an variance-covariance matrix D.

A few comments are in place. First, for generality of notation, all aspects in the dis-
tribution of θij are subscripted by i and j, whereas one might choose all distributions
to be common to a particular measurement occasion j or even common over values of i
and j. Second, the two parameters ηij and λij refer to the linear predictor and/or the
natural parameter. The basic difference is that λij encompasses the random variables θij,
which captures overdispersion at mean scale, whereas ηij refers to the ”GLMM part” only.
Third, it is convenient, but not strictly necessary, to assume that the two sets of random
effects, θij and bi, are independent of each other. Fourth, regarding the components θij
of θi, three useful special cases result from assuming that: (1) they are independent; (2)
they are correlated, implying that the collection of univariate distributions Υij($ij, σ

2
ij)

needs to be replaced with a multivariate one; and (3) they are equal to each other, useful
in applications with exchangeable outcomes Yij. Fifth, choosing a conjugate choice for
θij, not only has the advantage of respecting the range for the mean, but also that closed
forms for the marginal mean and variance, and even for the entire marginal distribution,
are possible (Molenberghs et al, 2010). Sixth, the relationship between the conditional
mean and natural parameter now is

λij = g(µcij) = g(θij · κij). (3.34)

Note that the function g(·) transforms the product θij · κij, whereas the function h(·)
transforms the κij only. For the marginal mean of the outcome Yij, with the use of
iterated-expectation-base calculations, we have:

E(Yij) = E(θij) · E(κij) = E[g−1(λij)]. (3.35)

The marginal likelihood function equals

L(ϑ, D,$,Σ) =
N∏
i=1

Li(yi | ϑ, D,$i,Σi)

=
N∏
i=1

[∫
θ,b

(
ni∏
j=1

fij(yij | ϑ,bi,θi) · f(bi | D) · f(θi |$i,Σi) · dbi · dθi

)]
,

(3.36)

where Li(yi | ϑ, D,$i,Σi) presents the likelihood contribution of subject i and ϑ groups
all parameters in the conditional model for Yi.

3.4.2 Generic Approximations for Marginal Model Elements

Even though formula (3.35) allows for explicit expressions of the marginal means in a
good number of cases (Molenberghs et al, 2007; Molenberghs et al, 2010), this is not
generally true for all cases. For example, Molenberghs et al (2007, 2010) derived explicit
expressions for the means, variances, and marginal densities in a number of outcome
types, such as normal, Poisson, and time-to-event. However, Molenberghs et al (2010)
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explored that no closed forms for either the mean nor the variance follow in Bernoulli-
type models for binary data with logit link and normal random effects bi, whether or
not beta random effects θij are present. Therefore, Molenberghs et al (2010) derived an
approximate expression for the marginal model elements, using a Taylor series expansion
(Hildebrand, 1962) around bi = 0:

κij ≈ h(ηij) + h′(ηij) · z
′

ij · bi +
1

2
· h′′(ηij) · z

′

ij · bi · b
′

i · zij. (3.37)

The generic marginal mean, variance and covariance approximations, and supplementary
details, are provided in Appendix A.2.

3.4.3 Strong Conjugacy

Until now, the concept of conjugacy (Cox and Hinkley, 1974; Lee, Nelder, and Pawitan,
2006; Agresti, 2002) was discussed for only one random effect distribution at a time
(Section 3.2). Extending the model with an extra random effect, results in a lower chance
of having conjugacy among the hierarchical and random effects distribution. Therefore,
it is of interest to explore under what conditions Model (3.32) still allows for conjugacy.

Molenberghs et al (2010) explored these conditions in the CM framework, where both
normal and overdispersion random effects are included, and introduced the principle of
strong conjugacy as a way of expressing in which cases conjugacy remains, even in the pres-
ence of normally distributed random effects bi. They considered conjugacy, conditional
upon the normally-distributed random effect bi. To this effect, they wrote (suppressing
nonessential arguments from the functions):

f(y | κ · θ) = exp{φ−1 · [y · h(κ · θ)− g(κ · θ)] + c(y, φ)}, (3.38)

generalizing (3.7), and retain (3.8). Here, the natural parameter is multiplicatively gen-
eralized to separate the transformed linear predictor κ from the parameter θ. Applying
the transformation theorem to (3.37) leads to

f(θ | γ, ψ) = κ · f(κ · θ | γ̃, ψ̃), (3.39)

Next, we request the parametric form (3.8) be maintained:

f(κ · θ) = exp{γ∗ · [ψ∗ · h(κ · θ)− g(κ · θ)] + c∗∗(γ∗, ψ∗)}, (3.40)

where the parameters γ∗ and ψ∗ follow from γ̃ and ψ̃ upon absorption of κ, and c∗∗(·, ·) is
the corresponding normalizing function. Using the two-stage approach (3.6) with (3.37)
and (3.39), the marginal model, in analogy with (3.9), equals:

f(y | κ) = exp

{
c(y, φ) + c∗∗(γ∗, ψ∗) + c∗∗(φ−1 + γ∗,

φ−1 · y + γ∗ · ψ∗

φ−1 + γ∗
)

}
, (3.41)

When strong conjugacy holds for the marginal model f(y | κ), the marginal joint distri-
bution f(y) and its corresponding moments are easy to compute. However, marginaliza-
tion is not guaranteed when the strong conjugacy principle does not hold. For example,
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Bernoulli models with logit link do not allow for strong conjugacy with the beta and nor-
mal random effects and explicit expressions for the marginal moments and joint marginal
distribution are unavailable. To handle this issue, generic approximations can be used
for the marginal moments (Section 3.4.2), and/or even numerical integration techniques
such as adaptive Gaussian quadrature and ordinary Gaussian quadrature (Molenberghs
and Verbeke, 2005) to derive such marginal quantities. For example, Ivanova et al (2014)
used the latter one to provide accurate parameter estimates for a combined proportional
odds-Beta-normal model in an overdispersed hierarchical ordinal setting. A special case
is obtained when using the probit link in Bernoulli models, that allows for closed-form
marginalization, even though strong conjugacy does not apply. Therefore, it can be said
that closed-form marginalization are present when the strong conjugacy principle applies,
but not vice versa.

3.5 General Estimation Strategies

In this section, a general exploration is given to the frequentist and Bayesian approaches
(Cox, 2006; Stegmueller, 2013). These approaches are principal views which help to
draw statistical inference, i.e., a procedure with the aim to extract information from
collected data by generalizing the observed results beyond the sample data to a population
or to the future. The frequentist viewpoint is based only on the observed data from
the current experiment, e.g., maximum likelihood (Section 4.2.1) and pairwise likelihood
(Section 4.2.2), while the Bayesian perspective also accommodates learning from previous
experiments and/or previous evidence. Explaining these approaches are essential for fully
understanding the proposed estimation strategies of the CM for the time-to-event setting
(Section 4.2). Both methods often lead to the same solution when no external information
(other than the data and the model itself) is introduced into the analysis.

3.5.1 Frequentist Estimation Approach

The frequentist approach assumes a distribution of a random variable Y, governed by
a parameter vector ι. In case of a normal distribution, this parameter vector equals ι
equals (µ, D) with µ the mean vector and D the variance-covariance matrix. The aim is
to estimate the unknown parameter vector ι by randomly selecting an appropriate sample
y = (y1, . . . , yn). To achieve this goal, different procedures, e.g., the least squares esti-
mation (LSE) or maximum likelihood estimation (MLE), can be used. The former one
has been a popular choice of model fitting in psychology (e.g., Rubin et al, 1999; Lam-
berts, 2000; Myung, 2003) and is tied to many familiar statistical concepts such as linear
regression, sum of squared error (SSE), proportion variance accounted for (i.e. r2), and
root mean squared deviation (RMSD). Unlike MLE, introduced by Fisher in the 1920s
(Stigler, 2007), LSE requires no or minimal distributional assumptions. It is useful for
obtaining a descriptive measure for the purpose of summarizing observed data, but has no
basis for testing hypotheses or constructing confidence intervals. The latter one, the MLE,
owns many optimal properties in estimation e.g., sufficiency (complete information about
the parameter of interest contained in its MLE estimator); consistency (true parameter
value that generated the data recovered asymptotically, i.e. for data of sufficiently large
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samples); efficiency (lowest-possible variance of parameter estimates achieved asymptoti-
cally); and parameterization invariance (same MLE solution obtained independent of the
parametrization used), which aren’t present in LSE. Further, many of the inference meth-
ods in statistics are developed based on MLE. For example, MLE is a prerequisite for the
chi-square test, Bayesian methods, inference with missing data, modeling of random ef-
fects, and many model selection criteria such as the Akaike information criterion (Akaike,
1973 and 1974) and the Bayesian information criteria (Schwarz, 1978).

In this thesis, the MLE principle is discussed to make inferences on the proposed CM (Sec-
tion 4.2.1). MLE maximizes the likelihood function L(ι | y1, . . . , yn) = f(y1, . . . , yn | ι)
where f(·) represents the probability density function of Y. In practice, it is more compu-
tational convenient to work with the logarithm of the likelihood function l(ι | y1, . . . , yn) =
ln [L(ι | y1, . . . , yn], due to the parameterization invariance property. However, in the CM
framework, maximization of the likelihood (3.36) need to be done. The main problem in
maximizing (3.36) is the presence of N integrals over the random effects bi and θ. In
some special cases, e.g. the linear mixed model for continuous outcomes (Section 3.3.1)
where likelihood (3.31) is used, the N integrals can be worked out analytically. However,
in general, no analytic expressions are available for the integrals in (14.2) and numerical
approximations are claimed (Molenberghs and Verbeke, 2005).

Molenberghs and Verbeke (2005) discussed a number of numerical approximations and
subdivided them in those that are based on the approximation of the integrand, those
based on an approximation of the data, and those that are based on the approximation
of the integral itself, explaining the popularity of Taylor-series expansion based methods,
such as penalized quasi-likelihood (PQL) and marginal quasi-likelihood (MQL), Laplace
approximation, and numerical-integration based methods (e.g., Gaussian quadrature and
adaptive Gaussian quadrature). An extensive overview of many approximations can be
found in Tuerlinckx et al (2004), Pinheiro and Bates (2000), and Skrondal and Rabe-
Hesketh (2004). Several of the series expansion methods tend to exhibit bias, an issue
taken up in Breslow and Lin (1995), and suggesting the use of alternative methods.

Additionally, closed-form integration, apart from the normal case, is within reach for the
Poisson, probit and Weibull cases. Now, some closed forms involve series expansions, and
may be either time consuming or cumbersome to implement. This notwithstanding, a va-
riety of alternative approaches are possible, such as partial marginalization (Molenberghs
et al, 2010) and pairwise likelihood (Molenberghs and Verbeke, 2005; Renard et al, 2004).
These approaches are discussed in the time-to-event setting (Section 4.2.1 and 4.2.2).

3.5.2 Bayesian Estimation Approach

Alternatively to the frequentist paradigm, the Bayesian estimation approach can be ap-
plied (Berger, 2006; D’Agostini, 2003; Swinburne, 2002). This approach differs from the
frequentist methodology in the way that it incorporates previous evidence of the parame-
ter in addition to the observed data. Therefore, the parameter ι is assumed to be random
with some prior distribution p(ι). Here, similar to the frequentist view, a true value of
the parameter ι is assumed, while the associated prior distribution expresses the uncer-
tainty on that true value. Either informative or non-informative prior can be obtained.
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An informative prior expresses specific, definite information about parameter ι, whereas
a non-informative prior expresses vague information about parameter ι.

In the Bayesian framework, computation of the posterior distribution, denoted by p(ι |
y1, . . . , yn), is of main interest. This distribution is obtained by updating the likelihood
L(ι | y1, . . . , yn) (i.e., the observed data) with the prior distribution p(ι) (i.e., previous ev-
idence of the parameter ι, either informative or non-informative). Using Bayes’ Theorem,
the posterior distribution can be calculated as

p(ι | y1, . . . , yn) =
L(ι | y1, . . . , yn) · p(ι)

p(y1, . . . , yn)
=

L(ι | y1, . . . , yn) · p(ι)∫
L(ι | y1, . . . , yn) · p(ι) · dι

, (3.42)

Because the denominator in (3.42), often called the normalizing constant, is depending
only on the observed data y1, . . . , yn (assumed to be fixed in the Bayesian methodology),
the posterior distribution is proportional to the prior distribution and likelihood, i.e.,

p(ι | y1, . . . , yn) ∝ L(ι | y1, . . . , yn) · p(ι), (3.43)

However, a major limitation towards more widespread implementation of Bayesian ap-
proaches is that obtaining the posterior distribution p(ι | y1, . . . , yn) often requires the
integration of high-dimensional functions in the normalizing constant. This often presents
computational difficulties, but several approaches short of direct integration have been
proposed (Smith, 1991; Evans and Swartz, 1995). This thesis focuses on the Markov
Chain Monte Carlo (MCMC) methods (Gilks, 2005; Geyer, 1992; Lesaffre and Lawson,
2012), which attempt to simulate direct draws from some complex distribution of interest.

MCMC is a sampling technique where values of ι are drawn sequentially from an approx-
imate distribution and correcting the samples to better approximate the target posterior
distribution, p(ι | y1, . . . , yn). The sequentially draws represent a Markov chain, where
the distribution of the sampled value depends on the most recent value drawn, i.e., gen-
erating ι(1), . . . , ι(T ) such that f(ι(t) | ι(t−1), . . . ι(1)) = f(ι(t) | ι(t−1)). Thus, an iterative
procedure is preformed where the approximate distribution is improved at each step (t) in
the simulation, in the sense of converging to the target posterior distribution. Hence, the
distribution of ι(t) converges to the target posterior distribution as t→∞. The two most
popular MCMC sampling methods are the Gibbs sampler (Geman and Geman, 1984) and
the Metropolis-Hastings algorithm (Chib, 1995; Hastings, 1970). A brief discussion about
these two methods can be found in Carlo (2004).

Unfortunately, the values are not immediately drawn from the posterior distribution. An
initial part, also known as the burn-in part, needs to be discarded and it is absolutely
necessary to check the convergence of the sampled sequences. Convergence can be explored
by using an informal or a formal check. A trace plot is an informal check of the convergence
of the MCMC samples which indicates how quickly the sampling procedure explore the
posterior distribution (Gelman et al, 2004). On the other hand, the Gelman-Brooks-
Rubin diagnostic is a formal check of the convergence by comparing the between and
within-sequence variances (Gelman and Rubin, 1992; Gelman et al, 2004).
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Chapter 4

A Combined Model for
Time-to-Event Data

In this chapter, emphasis is given on the modeling framework (Section 3.4) in an overdis-
persed, hierarchical time-to-event setting, by build upon the combined model of Molen-
berghs et al (2010) and Ghebretinsae et al (2011) with the possibility to accommodate
for censorship. Censorship, either informative or non-informative, gives rise to an extra
complexity. Additionally, different types of censoring (e.g., right-, left-, and interval cen-
soring) are possible. Here, non-informative right censoring is assumed, while informative
censoring mechanisms are taking into account in a joint marginalized multilevel model,
i.e. JMMM (Section 6.5.2). A similar implementation procedure is possible for left- and
interval censoring.

In Section 4.1, a hierarchical formulation is given for the proposed CM. This is supple-
mented with different estimation approaches for the fixed effects and variance components.
While Molenberghs et al (2010) focused on maximum likelihood, using so-called par-
tial marginalization (Section 4.2.1), additionally methods with pairwise likelihood ideas
(Molenberghs and Verbeke, 2005) and Bayesian estimation, particularly MCMC (Section
3.5.2), are provided. Often, researchers are also interested in subject-specific inferences
by estimating the random effects. Laird and Ware (1982) and Molenberghs and Verbeke
(2005) introduced the so-called Empirical Bayes (EB) estimation, and will be discussed
in Section 4.3 for the proposed CM framework (Section 4.1).

However, in case that high-dimensional hierarchical structures are present in the data,
estimation will become increasingly complex. To resolve this issue, the Alternating Impu-
tation Posterior (AIP), introduced by Clayton and Rashbash (1999) and further studied
by Ecochard an Clayton (2002), is proposed (Section 4.4).

4.1 The Proposed Combined Model

Given the focus on time-to-event outcomes in an overdispersed, hierarchical data struc-
ture, where the hierarchy is made up of repeated events and other types of clustering,
simultaneously, it is natural to select the Weibull distribution for (3.32) and the Gamma
distribution for Υij in Section 3.4.1. This choice is motivated in Section 3.2, i.e., that
conjugacy holds. Assuming its mean $ij ≡ $j and variance σ2

ij ≡ σ2
j constant across
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clusters (subjects) and re-parameterizing it using the conventional gamma-distribution
parameters, gives θij ∼ Gamma(αj, βj). With these choices, and adding normal random
effects for the ‘GLMM part’, the proposed model can be formulated by

f(yi | θi,bi) =

ni∏
j=1

λ · ρ · θij · yρ−1
ij · ex

′
ij ·ξ+z

′
ij ·bi · e−λ·y

ρ
ij ·θij ·e

x
′
ij ·ξ+z

′
ij ·bi

, (4.1)

f(θi) =

ni∏
j=1

1

β
αj
j · Γ(αj)

· θαj−1
ij · e−θij/βj , (4.2)

f(bi) =
1

(2 · π)q/2· | D |1/2
· e−

1
2
·b′i·D−1·bi . (4.3)

i.e., the conditional outcome, conjugate, and normal random effects distribution, respec-
tively. The same terminology is used as before (Section 3.1), where λ and ρ are the
conventional Weibull shape and scale parameters. It is implicit that the Gamma random
effects are independent. The modeling framework (4.1)–(4.3), also known as the so-called
Weibull-Gamma-normal (WGN) model (Molenberghs et al, 2010), enjoys the property
of strong conjugacy (Section 3.4.3), i.e., conjugacy still applies even after incorporating
normal random effects. This is owed by the fact that conjugacy holds for a Gamma
distribution in the Weibull case (Section 3.2) and the following property of the Gamma
distribution:

1

κ
· f(θ | α, β) =

1

κ
· 1

βα · Γ(α)
· θα−1 · e−θ/β

=
1

(κ · β)α · Γ(α)
· (κ · θ)α−1 · e−(κ·θ)/(κ·β)

= f(κ · θ | α, κ · β), (4.4)

Therefore, closed-form expressions can be derived for the marginal joint distribution,
mean, variance, and higher-order moments. These derivations can be found in Appendix
B.1, where also a number of related facts are derived. From the WGN model, special cases
such as the classical frailty model (i.e., no normal-random effects) and the Weibull-based
GLMM (i.e., no Gamma random effects) follow. Additionally, both conjugate random
effects θij and normal random effects bi are here assumed independent of each other.

Alternatively, for simplicity, the WGN model (4.1)–(4.3) can be re-formulated by

Yij | bi, θij ∼Weibull(ρ, kij), (4.5)

kij = λ · θij · ex
′
ij ·ξ+z

′
ij ·bi , (4.6)

bi ∼ N(0, D), (4.7)

θij ∼ Gamma(αj, βj). (4.8)

Both formulations (4.1)–(4.3) and (4.5)–(4.8) of the WGN model can be used. Here, the
former one will be used to cover up the estimation strategies from Section 4.2 and 4.3,
while the latter one is obtained to extend the WGN model to more complex clustering
formats (Section 4.4).
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4.2 Estimation of fixed effects

The attendance of analytically closed-form expressions for the WGN model (Appendix
B.1) makes it possible to perform parameter estimation through maximum likelihood.
However, while the marginal probabilities could be directly specified for estimation, the
existence of infinite series, as can be seen from expressions (B.8)–(B.9) in Appendix B.1,
may make the approach intractable. Due to its ease of analytical integration over the
conjugate random effects, and the availability of software that can numerically integrate
over normal random effects, e.g. the SAS procedure NLMIXED (Griswold and Zeger,
2004), a convenient estimation route can be provided by combining analytical integration
and numerical integration. Molenberghs et al (2007, 2010) used this ease to introduce the
so-called partial marginalization approach, i.e., analytically integrating the hierarchical
density (3.32) over the conjugate random effects, and leaving the normal random effects
untouched for numerical integration. Therefore, only the expressions for the joint distri-
bution marginal over the conjugate but conditional on the normal random effects need to
have a closed-form for estimation.

Alternative to this full likelihood method, focus will be laid on pairwise likelihood (Renard
et al, 2004) and Bayesian estimation for the WGN model. Both are extensively discussed
in Molenberghs et al (2012) and Efendi and Molenberghs (2013), while Ghebretinsae et
al (2013) placed emphasis on the latter one.

4.2.1 Maximum Likelihood

Maximum likelihood estimation with partial marginalization (Molenberghs et al, 2007
and 2010) in the time-to-event case, when using the WGN model, analytically integrates
out the hierarchical density (4.1) over the Gamma random effects, leaving the normal
random effects to numerical integration. However, in the survival case, it is often likely
that censoring occurs. Avoiding this concept in the estimation produce may lead to bias
results, resulting in wrong conclusions. Focusing on the right-censored data, for each
j, the conditional distribution is integrated over the time interval [Cij,+∞[. Here, Cij
denotes the jth censored time for cluster (subject) i. Additionally, the occurrence of
censoring on cluster (subject) i is declared by the censoring indicator δi, which equals 1 if
yij ≤ Cij and 0 if yij > Cij. The corresponding marginal-conditional density in the WGN
model equals:

f(yij | bi) =
(λ · eηij · ρ · yρ−1

ij · αj · βj)δi

(1 + λ · yρij · eηij · βj)αj+δi
, (4.9)

with ηij = x
′
ij · ξ + z

′
ij · bi and the same terminology of parameters is used as before

(Section 4.1). The marginal likelihood for ξ, D, λ, ρ,α,β, denoted by L(ξ, D, λ, ρ,α,β),
is derived as

L(ξ, D, λ, ρ,α,β) =
N∏
i=1

[∫
b

(
ni∏
j=1

fij(yij | bi) · f(bi | D) · dbi

)]
. (4.10)

To integrate out the normal random effects in the marginal likelihood (4.10), numerical-
integration based methods, such as adaptive Gaussian quadrature (Molenberghs and Ver-
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beke, 2005), are used. Parameter estimates are than obtained by maximizing the obtained
(approximated) marginal likelihood.

The concept of partial integration always applies whenever strong conjugacy holds. In-
deed, an expression of the form (3.41) corresponds to integrating over the conjugate
random effect θ, while leaving the normally distributed random effect embedded in the
predictor, κ in this notation. Recall that, while expressions of the type (3.41) appear to
be for the univariate case, they extend without problem to the longitudinal setting as
well.

4.2.2 Pairwise Likelihood

As an alternative to full likelihood in the frequentist approach, so-called pairwise-likelihood
estimation (Renard, Molenberghs, and Geys, 2004) can be used. Since pairwise likelihood
is a special case of pseudo-likelihood (Aerts et al, 2002; Arnold and Strauss, 1991; Molen-
berghs et al, 2012; Molenberghs and Verbeke, 2005), attention will first be given on the
latter one and specified into the former one.

The principal idea behind pseudo-likelihood is to replace a numerically challenging joint
marginal distribution by a simpler function assembled from suitable factors. This strategy
is useful when the computational burden of full likelihood becomes burdensome and/or
when robustness against misspecification of higher-order moments is desirable. This is
especially the case when the joint marginal distribution is available but cumbersome
to manipulate and evaluate, such as the joint marginal distribution (B.8) of the WGN
model. It can also stabilize computations and make the iterative process less dependent
on starting values, even though it may not always reduce computation time. Essentially,
the joint distribution is replaced with a product of factors of marginal and/or conditional
distributions of lower dimensions. Because such a product does not necessarily re-compose
the original joint distribution, sandwich-estimator ideas are then used to provide not
only valid point estimates, but also precision estimates and inferences derived therefrom
(Molenberghs and Verbeke, 2005). Next, a general (mathematically) discussion is given
of this approach.

Let S be the set of all 2n − 1 vectors of length n, consisting solely of zeros and ones,
with each vector having at least one non-zero entry. Denote by y

(s)
i the subvector of yi

corresponding to the components of s that are non-zero. The associated joint density is
fs(y

(s)
i ; ξ).To define a pseudo-likelihood function, one chooses a set δ = {δs | s ∈ S} of real

numbers, with at least one non-zero component. The logarithm of the pseudo-likelihood
is then defined as

pl =
N∑
i=1

∑
s∈S

δs · ln
[
fs(y

(s)
i ; ξ)

]
. (4.11)

Adequate regularity conditions have to be invoked to ensure that (4.11) can be maximized
by solving the pseudo-likelihood (score) equations, the latter obtained by differentiating
the logarithmic pseudo-likelihood and by equating its derivative to zero. These regularity
conditions are given in Appendix B.2. In particular, when the components in (4.11) result
from a combination of marginal and conditional distributions of the original distribution,
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then a valid pseudo-likelihood function results. Additionally, the classical log-likelihood
function is found by setting δs = 1 if s is the vector consisting solely of ones, and 0
otherwise. More details can be found in Varin (2008), Lindsay (1988), and Joe and Lee
(2008). Note that Joe and Lee (2008) use weighting for reasons of efficiency in pairwise
likelihood, similar in spirit to Geys, Molenberghs, and Lipsitz (1998), but differently
from its use here, which focuses on bias correction when data are incomplete. Another
important reference is Cox and Reid (2004).

Let ξ0 be the true parameter vector. Under the suitable regularity conditions (B1)–
(B7), Arnold and Strauss (1991) showed that maximizing the function (4.11) produces
a consistent and asymptotically normal estimator ξ̃N so that

√
N · (ξ̃N − ξ0) converges

in distribution to Np(0, I0(ξ0)−1 · I1(ξ0) · I0(ξ0)−1), where I0 and I1 are defined in (B.20)
and (B.21) respectively. More details can be found in Appendix B.2.

As stated earlier, models for non-Gaussian data can become prohibitive when subjected
to full maximum likelihood inference, especially with a lot of within-cluster replication.
le Cessie and van Houwelingen (1991) and Geys, Molenberghs, and Lipsitz (1998) replace
the true contribution of a vector of correlated binary data to the full likelihood, written as
f(yi1, . . . , yini), by the product of all pairwise contributions f(yij, yik) (1 ≤ j < k ≤ ni),
to obtain a pseudo-likelihood function. Also the term composite likelihood is encountered
in this context. Renard, Molenberghs, and Geys (2004) refer to this particular instance
of pseudo-likelihood as pairwise likelihood. Grouping the outcomes for subject i into a
vector Yi, the contribution of the ith cluster to the log pseudo-likelihood then specializes
to

pli =
∑
j<k

ln [f(yij, yik)] . (4.12)

if it contains more than one observation. Otherwise pli = f(yi1). Extension to three-
way and higher-order pseudo-likelihood is straightforward. All of these are special cases
of (4.11). Renard, Molenberghs and Geys (2004) used this estimation procedure for es-
timating multilevel probit models with random effects, while Molenberghs et al (2012)
and Efendi, Molenberghs and Iddi (2013) compared this approach with the conventional
maximum full likelihood principle (Section 4.2.1) to estimate recurrent asthma attacks in
children in the recurrent asthma data (Duchateau and Janssen, 2007), where censoring is
present, with the proposed WGN model from Section 4.1. Additionally, the former one
also compared these procedures with the WGN model in the comet assay data (Molen-
berghs and Verbeke, 2005), where no censoring is present.

4.2.3 Bayesian estimation

Alternatively to the previous frequentist approaches (Section 4.2.1 and 4.2.2), a fully
Bayesian route can be followed. This does not only have computational advantages, it
also allows to take relevant information from preceding studies into account by updating
the prior belief of the parameters’ distribution. In the last few years, the Bayesian ap-
proach has become popular among researchers, especially for fitting the CM. For example,
Aregay, Shkedy, and Molenberghs (2013) studied the CM from a Bayesian perspective for
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analyzing the epilepsy data set (Thall and Vail, 1990), while Ghebretinsae et al (2013)
extended the WGN model to the Weibull-Gamma-normal-normal (WGNN) model, i.e.,
adding an extra normal random effect to the WGN model, to accommodate the full hi-
erarchical structure of the comet assay data and analyzed it in a Bayesian approach.

In the WGN case, using the same terminology as before, formula (3.43) becomes

f(ϑ, D,$,Σ | y) ∝
N∏
i=1

ni∏
j=1

fij(yij | ϑ,bi,θi) · f(ϑ,bi,θi), (4.13)

with prior densities f(ϑ,bi,θi). Inferences are typically made by taking random draws
from the posterior density f(ϑ, D,$,Σ | y) using MCMC. A further discussion on this
topic can be found in Section 3.5.2. Unlike the popularity of the SAS procedure NLMIXED
in the frequentist approach, other statistical programs such as Winbugs, R2Winbugs, and
R2jags are commonly used in the Bayesian framework. These packages allow for MCMC
based integration over multiple random effects (Browne and Draper, 2002).

4.3 Estimation of the random effects

Although in practice one is usually primarily interested in estimating the parameters of
the marginal distribution (B.8), i.e., ξ, D, λ, ρ, α, β, estimations of the random effects θij
and bi are often useful as well, e.g., for detecting special profiles (i.e., outlying individuals)
or groups of individuals evolving differently in time (Chapter 9). Additionally, estimates
for the random effects are substantially for predicting subject-specific evolutions. Because
the parameters θij and bi are assumed to be random, it is most natural to estimate them
using Bayesian techniques (Box and Tiao, 1992; Gelman et al, 1995). Laird and Ware
(1984) and Molenberghs and Verbeke (2005) introduced so-called Empirical Bayes (EB)
estimation, which combines a Bayesian approach with maximum likelihood. Even though
the latter one focuses on EB estimations in the LMM and GLMM settings, this thesis
addresses an EB estimation strategy for the CM framework (Iddi, Molenberghs, Aregay,
and Kalemab, 2014), particular for the WGN model. Iddi et al (2014) used this EB
estimation approach to evaluate individual profiles in the epilepsy data set and recurrent
asthma data, where the WGN model is used for the latter one.

4.3.1 Empirical Bayes Estimation of Normal Random Effect

While Molenberghs and Verbeke (2005) explored the EB estimation for the LMM and
GLMM setting, Iddi et al (2014) extended this in the CM framework, where both random
effects θij and bi need to be estimate. The procedure of EB estimation uses maximum
likelihood estimates to replace the unknown parameters in the posterior distribution of
the random effect. In case of the normal random effect bi, the density for the posterior
distribution bi is given by

f(bi | yi) =
f(yi | bi) · f(bi)∫

b
f(yi | bi) · f(bi) · dbi

, (4.14)
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where the parameters are suppressed from notation. The distributions involved in (4.14)
are marginalized over the random effects θij. These obtain closed forms in the WGN
setting, due to the strong conjugacy principle (3.41). By using the same terminology as
before, the following posterior densities f(bi | yi) are given for the WGN model:

f(bi | yi) ∝
ni∏
j=1

(λ · eηij · ρ · yρ−1
ij · αj · βj)δi

(1 + λ · yρij · eηij · βj)αj+δi
· 1

(2 · π)q/2· | D |1/2
· e

1
2
·b′i·D−1·bi , (4.15)

The estimates of the random effects based on the posterior distribution are obtained from:

b̂i = E(bi | yi) =

∫
b

bi · f(bi | yi) · dbi. (4.16)

Alternatively, the random effects bi are sometimes treated as unknown parameters to be
estimated by the following maximization problem:

b̂i = argmaxbi
f(bi | yi).

Although (4.16) can easily be programmed, the estimates and their standard errors are
also given as a bonus when using a tool such as the SAS procedure NLMIXED, as long
as the correct conditional densities involving only the normal random effect are specified.

4.3.2 Empirical Bayes Estimation of Conjugate Random Effects

A similar approach can be followed for θij. The posterior density for θij equals

f(θij | yij) =
f(yij | θij) · f(θij)∫

θ
f(yij | θij) · f(θij) · dθij

, (4.17)

with f(yij | θij) =
∫
b
f(yi | θij,bi) · f(bi) · dbi and the parameters are suppressed from

notation. From Appendix B, the conditionally densities f(yi | θi) of the WGN model (i.e.,
formula (B.3)) involves sums of infinite series that are cumbersome to compute. Therefore,
it is handier to carry out this integration numerically (e.g., adaptive Gaussian quadrature).
The challenge is the intensive computation involved, especially when the dimension of bi
and θij combined is high. To handle this difficulty, Iddi et al (2014) proposed a two-
stage approach, where the random effects bi are estimated (according to Section 4.3.1)
and replaced them in (4.17) in the first stage. The parameters ξ, D, λ, ρ,α,β are also
estimated and treated as known parameters in (4.17). In the second stage, the estimator

θ̂ij of θij is obtained from:

θ̂ij = E(θij | yij) =

∫
θ

θij · f(θij | yij) · dθij. (4.18)

Iddi et al (2014) motivated this approach by developing an appropriate SAS macro for
handling this computation (Appendix B.3). Estimation of the standard errors are done
in a similar way, using the posterior distribution. From

Var(θ̂ij) =

∫
θ

(θij − θ̂ij) · (θij − θ̂ij)
′ · f(θij | yij) · dθij, (4.19)

the standard errors are obtained by taking the square root of Var(θ̂ij).
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4.4 Extension to more complex clustering formats

Until now, only one hierarchical level is considered in the proposed WGN model (4.5)–
(4.8). This assumption is often inadequate to accommodate the full hierarchical structure.
For example, choosing only one hierarchical level falls short of analyzing the comet assay
data. Therefore, extensions of the CM model are needed to cover up this higher hierar-
chical structures. A straightforward choice is to propose more than one normal random
effect in the model, where the number of normal random effects equals the amount of
hierarchical levels.

In case of two hierarchical levels, the WGN model (4.5)–(4.8) becomes:

Yi1i2i3 | bi1 ,bi1i2 , θi1i2i3 ∼Weibull(ρ, ki1i2i3), (4.20)

ki1i2i3 = λ · θi1i2i3 · e
x
′
i1i2i3

·ξ+z
′
i1i2
·bi1+z

′
i1i2i3

·bi1i2 , (4.21)

bi1 ∼ N(0, D1), (4.22)

bi1i2 ∼ N(0, D2), (4.23)

θi1i2i3 ∼ Gamma(αi3 , βi3), (4.24)

with observation i3 in sub-cluster i2, located in the (top-)cluster i1 (i1 = 1, . . . , N ; i2 =
1, . . . , ni1 ; i3 = 1, . . . , ni1i2). Efendi and Molenberghs (2013) named this two-cluster-level
model (4.20)–(4.24) the Weibull-Gamma-normal-normal (WGNN) model, which is one of
the four hierarchical overdispersed Weibull models that were analyzed in Ghebretinsae et
al (2011) for the comet assay data.

Generally, extending the WGN model to a multilevel CM with m cluster levels can be
done in a similar way, leading to:

Yi1i2...im | bi1 ,bi1i2 , . . . ,bi1i2...im−1 , θi1i2...im ∼Weibull(ρ, ki1i2...im), (4.25)

ki1i2...im =λ · θi1i2...im · e
x
′
i1i2...im

·ξ+
∑m−1
l=1 z

′
i1...il

·bi1...il , (4.26)

where θi1i2...im is Gamma distributed with parameters αim and βim and all bi1...il are
normal distributed with mean 0 and variance Dl. Unfortunately, estimation will become
increasingly complex with growing m. To resolve this issue, Efendi and Molenberghs
(2013) proposed to make use of the Alternating Imputation Posterior (AIP) algorithm,
introduced by Clayton, and Rasbash (1999) and further studied by Ecochard, and Clayton
(2002) and Cho, and Rabe-Hesketh (2011). A general overview of this algorithm can be
found in Appendix B.

Applying the AIP algorithm, the model above can be partitioned such that, for l =
1, . . . ,m, the jth order random-effects structure is fitted by considering

o(j) = e
∑
l6=j z

′
i1...il

·bi1...il , (4.27)

as a known offset, leading formula (4.26) to the jth nested sub-model

ki1i2...im = λ · θi1i2...im · o(j) · ex
′
i1i2...im

·ξ+z
′
i1...ij

·bi1...ij

∝ λ · θi1i2...im · e
x
′
i1i2...im

·ξ+z
′
i1...ij

·bi1...ij . (4.28)

At iteration step (t), the following steps are carried out, for each l = 1, . . . ,m:
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1. Fit the jth nested sub-model (4.28) using the offset o(j) calculated from current
values of the random effects;

2. Sample the model parameters ξ(t) from an approximation to the joint posterior
distribution of ξ, given y, x and o(j);

3. Sample b
(t)
i1...ij

from the posterior distribution of bi1...ij , given y, x and o(j), which is
normally distributed.

The AIP has been implemented in both a sequential as well as a parallel fashion (Ecochard
and Clayton, 2002). While the overall parameter (ξ, b) is estimated by (B.22), the
variance is the mean of the variances plus the variance of the estimates, using the law of
iterated expectations. By using the principles laid out in Ecochard and Clayton (2002),
a Gaussian approximation is obtained using Rao-Blackwellization (Gelfand and Smith,
1990), leading to formula (B.23) for the variance.

To end this discussion, it can be said that, within each AIP, a combined model with one
normally distributed random effect as well as a conjugate random effect is fit. Estimation
of the fixed effects can be done through the three distinct strategies of full likelihood
(Section 4.2.1), pairwise likelihood (Section 4.2.2), or Bayesian nature (Section 4.2.3).
Furthermore, Efendi and Molenberghs (2013) mentioned that, unlike with maximum and
pairwise likelihood, Bayesian estimation does not combine with AIP. Rather, direct imple-
mentation is possible using standard statistical programs such as Winbugs, R2Winbugs,
and R2jags. These packages allow for MCMC based integration over multiple random
effects (Browne and Draper, 2002).
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Chapter 5

A Marginalized Combined Model for
Time-to-Event Data

Even though the parameter estimates from the hierarchical LMM (3.22)–(3.23) have a
marginal interpretation, i.e., E(Yi) = E[E(Yi | bi)] = Xi · ξ, this is generally not the
case for the parameters in the GLMM (3.29)–(3.30) for non-Gaussian outcomes (e.g.
binary, time-to-event, etc.), where a subject-specific interpretation is retrieved and not
a population-averaged one. For example, using the logit link to relate covariates and
random effects to the expectation of a binary outcome Yij,

E(Yij) = E[E(Yij | bi)] = E

[
ex
′
ij ·ξ+z

′
ij ·bi

1 + ex
′
ij ·ξ+z

′
ij ·bi

]
6= ex

′
ij ·ξ

1 + ex
′
ij ·ξ
. (5.1)

As an alternative route, a direct marginal specification can be used to obtain population-
averaged interpretations. Liang and Zeger (1986) proposed so-called generalized esti-
mation equations (GEE), which extends GLM by allowing for correlation within cluster
(subject) through a so-called working correlation. Even when this working correlation is
misspecified, parameter estimators are still consistent and asymptotically normal. How-
ever, Molenberghs and Verbeke (2005) and Diggle et al (2002) pointed out that GEE
poses challenges when incomplete data is present, i.e., GEE is only valid under missing
completely at random (MCAR) and not when data are missing at random (MAR). Many
extensions of GEE were suggested in the past. For example, Fitzmaurice et al (2009) ex-
tended the GEE framework, based on inverse probability weighting, which allow for MAR.
Additionally, this methodology lacks a likelihood basis, which rules out certain inferential
routes. A more comprehensive discussion about GEE can be found in Molenberghs and
Verbeke (2005), along with the extensions (e.g., Prentice’s GEE Method, second-order
GEE, etc.).

Choosing a hierarchical or marginal specification depends on the research question. Some-
times, even both are needed. For example, in a clinical trial, researchers are often inter-
ested in the marginal effect of a drug, while, at the same time, subject-specific effects of
the drug are needed. Therefore, it is useful to provide an elegant framework that simul-
taneously allows for a marginal as well as a subject-specific interpretation by using both
marginal and conditional models at the same time.

In this chapter, emphasis is placed on the so-called marginalized multilevel model (MMM),
introduced by Heagerty (1999) and Heagerty and Zeger (2000). This methodology brings
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together the strength of both GEE and GLMM, in such a way that the marginal mean,
rather than the mean conditional on random effects, is regressed on covariates. The
marginal regression parameters are adopted while still permitting individual-level pre-
dictions. However, these authors did not provide any connection between the formu-
lated MMM and conditional model. To resolve this issue, Griswold and Zeger (2004)
reformulated the MMM to make connections between marginal and conditional mod-
els transparent, and additionally construct marginalized models in terms of their condi-
tional model counterparts (e.g., logistic-logistic MMM for the logistic-normal GLMM and
probit-probit-normal MMM for the probit-normal GLMM). Unfortunately, they limited
this methodology to GLMM, without capturing overdispersion. Iddi and Molenberghs
(2012) extended this for the CM framework (Section 3.4) in case of binary and count
outcomes.

In Section 5.1, focus will be given on the MMM framework (Heagerty, 1999) for censored,
repeated time-to-event outcomes with overdispersion (Efendi, Molenberghs, and Iddi,
2013). A general formulation of this MMM is given in terms of the proposed hierarchical
WGN model (4.1)–(4.3) from Section 4.1. Similar estimation strategies (Sections 4.2 and
4.3) can be used. In this context, full likelihood estimation with partial marginalization is
discussed (Section 5.2), keeping in mind that pairwise likelihood and Bayesian estimation
are possible too.

5.1 The Marginalized Combined Model

Even though the CM framework of Section 3.4 accommodates both overdispersion and
hierarchical data structures, subject-specific interpretations are retrieved from the fixed-
effects vector ξ in (4.1). Knowing the elegant closed-form solution for the marginal mean
function of the WGN model (4.1)–(4.3), i.e., formula (B.14), Molenberghs et al (2010)
showed that, consistent with Zeger, Liang, and Albert (1988), the marginal regression
function does not alter, except for the marginal intercept, which depends on the con-
ditional intercept, the scale parameter λ, and the overdispersion parameters αj and βj.
Making inferences on the intercepts, or a combination of covariate effects and intercepts,
will become inconvenient. To avoid this, Efendi, Molenberghs and Iddi (2013) proposed
a so-called marginalized multilevel model (MMM), in the tradition of Heagerty (1999),
Heagerty and Zeger (2000), and Griswold and Zeger (2004), by specifying the regression
function marginally and still entering the normal random effects bi into the conditional
mean function µcij directly.

Adopting the same terminology as before, this model, also known as the combined overdis-
persed and marginalized multilevel model (COMMM), takes the form:

µmij = h(x′ijξ
m), (5.2)

µcij = θij · κij = θij · h(∆ij + z
′

ij · bi), (5.3)

where the fixed-effects parameter vector ξm is superscripted to denote its directly marginal
interpretation, unlike the fixed-effects parameter vector ξ from Chapter 4, and ∆ij repre-
sents a so-called connector function between (5.2) and (5.3). The predictor on the right
hand side of (5.3) replaces the conventional predictor in (4.1).
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Due to the dual mean specification (5.1)–(5.2) of COMMM, a defining (closed-form)
expression for the connector function ∆ij (Griswold and Zeger, 2004) follows for the
WGN model:

h(x′ijξ
m) = µmij =

∫
θ,b

θij · h(∆ij + z
′

ij · bi) · f(θij | αj, βj) · f(bi | D) · dθij · dbi

= E(θij) ·
∫
b

h(∆ij + z
′

ij · bi) · f(bi | D) · dbi (5.4)

⇓ (WGN model)

∆ij = −log(αj · βj) + x′ijξ
m −

z
′
ij ·D · zij

2
. (5.5)

When no gamma random effects are used in the WGN model, i.e. the Weibull-based
GLMM, the first term on the right hand side of (5.5) simply drops. While Efendi, Molen-
berghs and Iddi (2013) explored this model for the WGN case, Iddi and Molenberghs
(2012) focused on binary and count data by proposing appropriate COMMMs with, addi-
tional for the latter one, a zero-inflated, overdispersed, and marginalized multilevel model
(ZICOMMM).

5.2 Estimation and Inference

Similar estimation strategies (Sections 4.2 and 4.3) can be applied for the COMMM,
where the predictor on the right hand side of (5.3) replaces the conventional predictor in
(4.1). In this section, emphasis is placed on the full likelihood principle for estimating the
fixed effects. Other approaches such as Bayesian and pairwise likelihood estimation can
be applied too. Additionally, EB estimation of the normal random effects bi and gamma
random effects θij can be done in a similar way, see Sections 4.3.1 and 4.3.2, respectively.

Full likelihood estimation is provided with reference to Section 4.2.1, where the idea
of partial marginalization (Molenberghs et al, 2010) is adopted and right-censoring is
taken into account by declaring the occurrence of right-censoring on cluster (subject)
i by the censoring indicator δi (either 1 or 0, if yij ≤ Cij or yij > Cij respectively).
The corresponding marginal-conditional density in the COMMM for the Weibull-Gamma-
normal case is:

f(yij | bi) =
(λ · eηij · ρ · yρ−1

ij · αj · βj)δi

(1 + λ · yρij · eηij · βj)αj+δi
, (5.6)

with ηij = ∆ij +z
′
ij ·bi = −log(αj ·βj)+x′ijξ

m+z
′
ij ·bi−

z
′
ij ·D·zij

2
. The marginal likelihood

L(ξm, D, λ, ρ,α,β) is derived as

L(ξm, D, λ, ρ,α,β) =
N∏
i=1

[∫
b

(
ni∏
j=1

fij(yij | bi) · f(bi | D) · dbi

)]
. (5.7)

Implementing this methodology in the SAS procedure NLMIXED can easily be done
(Appendix C.1).
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Chapter 6

Flexible Joint Multilevel Modeling
Framework for Repeated,
Overdispersed Time-to-Event Data

Over the years, massive attention has been devoted to joint modeling, due to the desire
of getting more insight into the data with a single statistical model. Researchers often
collect several kinds of outcomes simultaneously in their studies, commonly of a mixed
nature. While joint modeling frameworks capture the association between outcomes,
separately analysis on these outcomes fails to do it. This chapter focuses on a flexible
joint multilevel modeling framework involving an overdispersed, repeated time-to-event
setting, by adopting the modeling frameworks from Chapters 4 and 5 for at least one
time-to-event outcome and simultaneously capturing the association between outcomes
in the correlated normal random effects.

Depending on the research question(s), either subject-specific or population-averaged in-
terpretations are desired. While Section 6.2 places emphasis on subject-specific interpreta-
tions, population-averaged interpretations are handled in Section 6.4. Both joint modeling
approaches are supported with cases in commonly used real-life situations (Section 6.3
and 6.5, respectively). Whereas the first two cases are related to previously conducted
research, i.e., Njagi, Molenberghs et al (2013) and Njagi, Rizopoulos et al (2013), and the
third case extends the hierarchical joint modeling strategy of Ghebretinsae et al (2012) to
a marginal one, a new marginalized approach (according to the joint marginalized mul-
tilevel methodology of Section 6.4) is proposed for capturing informative censoring in an
overdispersed, repeated time-to-event setting (Section 6.5.2).

6.1 Introduction

In the previously discussed chapters (Chapter 4 and 5), focus has been given to modeling
overdispersed, repeated time-to-event outcomes separately by using the so-called WGN
model (4.1)–(4.3) for subject-specific interpretations and corresponding COMMM with
connector function (5.5) for population-averaged interpretations. However, these types of
single modeling strategies are limited in such a way that no answers can be provided to
questions relating several or all outcomes simultaneously. For example, in toxicity studies,
no single standard endpoint exists to assess the toxicity or efficacy of the compound of
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interest, but co-primary endpoints are available to assess the toxic effects or the working
of the compound. Modeling these endpoints jointly not only appeals to draw overall
inferences using all responses, it also captures the association among the endpoints. In a
comet assay, moreover, tail length and tail intensity are commonly used endpoints to assess
the DNA damage of a cell as a result of an exposure. Even though univariate analyses
are conducted to asses the treatment effect on each endpoint separately, researchers often
prefer to reach a conclusion on the overall effect using all outcomes simultaneously, and
sometimes even want to know the association between outcomes as well.

While an entire range of combinations is possible in the literature about joint modeling
(e.g., continuous/binary, count/survival, etc.), this thesis focuses on four specific cases,
each centering on at least one of overdispersed, repeated time-to-event outcome, i.e.,
two hierarchical joint multilevel modeling frameworks for (1) longitudinal continuous and
repeated time-to-event outcomes and (2) repeated binary and repeated time-to-event out-
comes, and two marginalized joint multilevel models to accommodate (3) bivariate, re-
peated time-to-event outcomes and (4) capturing informative censoring mechanisms in
an overdispersed, repeated time-to-event setting. While non-informative censoring is as-
sumed in the first three cases, an informative censoring scheme for the time-to-event
outcome is proposed in the last case. Furthermore, different joint modeling approaches
exist (e.g., Henderson et al, 2000; Tseng et al, 2005; Wintrebert et al, 2005; Fitzmaurice
et al, 2009). In this chapter, a flexible multivariate random effects approach, i.e., the
so-called extended shared parameter model (ESPM), is chosen for all four cases. In this
modeling technique, multivariate random effects are used in which the two outcomes are
associated via separate but correlated random effects. The same approach was adopted
by Ghebretinsae et al (2012) for modeling two hierarchical, overdispersed time-to-event
outcomes jointly in a hierarchical setting. Additionally, Iddi and Molenberghs (2012) used
this methodology to model two longitudinal outcomes jointly in a marginalized, multilevel
way.

Fieuws and Verbeke (2004) explored this paradigm critically by studying the relation
between two hearing thresholds. Here, a discrepancy was found between the data and the
relations implied by the joint random-effects model, for the association of the evolutions
as well as for the evolution of the association, indicating that it can be misleading to
over-interpret the results on the relationship between outcomes implied by the model.
Nevertheless, several advantages arise of using random-effects models for joint modeling
purposes: (1) the different outcomes do not necessarily need to be of the same type, i.e.,
either continuous or discrete; (2) the different outcomes neither need to be measured at
the same time-points (in a longitudinal study), nor does one have to assume that the same
number of repeated measurements is available for all outcomes; (3) a simple indication
of the association between different outcomes is observed; (4) implementation can easily
be done in standard statistical software packages (e.g., the SAS procedure MIXED for
analyzing only continuous outcomes and the SAS procedure NLMIXED for the evaluation
of discrete outcomes or mixed type outcomes), etc.
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6.2 Basic Building Blocks for a Subject-Specific

Interpretation

Consider two longitudinal outcomes Y1ij and Y2ik, denoting the jth and kth measurement
on the ith subject for outcome 1 and 2, respectively, (i = 1, 2, . . . , N , j = 1, 2, . . . , n1i,
and k = 1, 2, . . . , n2i). With similar notation as before (Section 3.4.1), i.e., where both
outcomes are modeled with the flexible modeling framework of Section 3.4, the ESPM for
subject-specific interpretations can generally be expressed by the following three parts:

η1ij = x
′

1ij · ξ1 + z
′

1ij · b1i, (6.1)

η2ij = x
′

2ij · ξ2 + Λ · z′2ij · b2i, (6.2)[
b1i

b2i

]
∼ N

([
0
0

]
,

[
D11 D12

D12 D22

])
. (6.3)

Here, a few comments are in place. First, the fixed-effects parameters ξ1 and ξ2 for the
first outcome and second outcome, respectively, are kept separate because the type of
outcome can be different, e.g., a time-to-event outcome for the first one and a continuous
outcome for the second one. Second, the covariates in (6.1) and (6.2) need not be the same.
Third, a (usually diagonal) re-scaling matrix Λ is included in the GLMM part because of
the difference of scale. If no scale difference is present between both outcomes (e.g., when
two outcomes of the same type are modeled), the contribution of Λ in (6.2) will vanish.
Fourth, different random effect vectors are used for the different longitudinal profiles, i.e.,
b1i and b2i. Both vectors are related by assuming that these random effects are bivariate
normally distributed. Fifth, conditionally on the normally distributed random effects
vector (b1i and b2i), it is assumed that the two outcomes are independent. The common
dependency between both outcomes is therefore specified by the correlated matrix D12.
If uncorrelated random effects vectors are assumed, the resulting model is equivalent to
modeling the two outcomes separately by the flexible modeling framework of Section 3.4.
Sixth, a different random-effects structure can be applied for both outcomes. For example,
if a random-slope model is chosen for outcome 1 and a random-intercept model is used
for outcome 2, the bivariate normal distribution (6.3) is expressed by

(b1(0)i

b1(1)i

)
b2(0)i

 ∼ N

(0
0

)
0

 ,
(d11 d12

d12 d22

) (
d13

d23

)
(
d13 d23

)
d33

 . (6.4)

Often, a general unstructured variance-covariance matrix will be assumed, but specific
restrictions can be imposed as well. For example, assuming perfect correlations between
elements in b1i and elements in b2i, i.e., d13 = d23 = 1 in (6.3), would lead to a joint
model in which some random effects are shared between the two outcomes. Evidently,
this is equivalent to sharing components between b1i and b2i.

Due to the independency between both outcomes, conditionally on the random effects,
the likelihood function corresponding to the joint model is given by
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L(Ξ) =
N∏
i=1

∫
b

f1i(y1i | b1i) · f2i(y2i | b2i)︸ ︷︷ ︸
=fi(y1i,y2i|bi)

·f(bi) · dbi


 , (6.5)

in which Ξ is the vector of all parameters in the conditional distributions and the multi-
variate normal distribution of bi, and fpi(ypi | bpi) =

∫
θ
fpi(ypi | θpi,bpi) · fpi(θpi) · dθpi

(p = 1, 2). Except for special cases (e.g., with linear models), the integral of (6.5) cannot
be calculated analytically and numerical approaches (e.g., adaptive Gaussian quadrature)
are needed.

Ivanova, Molenberghs and Verbeke (2013) used this terminology to model two ordinal
outcomes jointly by two proportional odds mixed model (POMM), while Ghebretinsae
et al (2013) obtained this methodology to model the tail length and tail intensity in the
comet assay (Molenberghs and Verbeke, 2005) in a joint way with two random-intercept
WGN models.

6.3 Applications

6.3.1 Case 1: Joint Hierarchical Multilevel Model for Longitu-
dinal Continous and Repeated Time-to-Event Data

One of the most common practical situations is the collection of longitudinal continuous
outcomes and repeated, time-to-event outcomes simultaneously. For example, Dendale et
al. (2011) and Njagi et al. (2013a) describe a study in cardiology, in which researchers,
through telemonitoring (a process through which patients are remotely monitored), not
only repeatedly measured daily blood pressure, heart rate and weight from initially dis-
charged chronic heart failure patients, but also recorded the time-to-rehospitalization.
Time-to-rehospitalization in this case was a recurrent survival outcome, since a discharged
patient could be rehospitalized more than once over time, while the repeatedly measured
daily blood pressure, heart rate and weight of a patient each correspond to a longitudinal,
continuous outcome.

Let Tik be the time-to-event outcome for the kth measurement in cluster i (k = 1, . . . , pi)
and Yij represent the continuous outcome for the jth measurement in cluster i (j =
1, . . . , ni). The proposed WGN model (4.5)–(4.8) with fixed parameters ξ1 is used to
model Tik. To avoid over-parametrization, the parameters of the Gamma random effects
are kept constant, i.e., θik ∼ Gamma(α, β), and the scale and shape parameters are
assumed fixed between members of a cluster, i.e., λ and ρ. Other choices can be made
as well. Additionally, the gamma random effects are assumed independent, but can be
relaxed (not been done here). For the continuous outcome Yij, the LMM of Section
3.3.1 is used with fixed parameters ξ2. The same terminology is used for this approach.
Furthermore, a vector of scale factors w

′

ik is used in the time-to-event setting to resolve
the issue of difference scaling. At last, shared normal random effects are considered, in
such a generic way that z

′
ij and w

′

ik can be chosen such that some random effects are
present in the Weibull predictor, others are only obtained in the linear predictor of the
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normal outcome and the rest influence both outcomes. Hereby, both shared and correlated
random effects are encompassed in the joint model.

Conditionally on the shared normal random effects, the LMM (for modeling the contin-
uous outcome) and WGN model (for modeling the time-to-event outcome) are assumed
independent. Therefore, the conditional ESPM distribution (on both the normal and
gamma random effects) can be written as

f(yi, ti | bi,θi) =

pi∏
k=1

λ · ρ · θik · tρ−1
ik · e

x
′
ik·ξ1+w

′
ik·bi · e−λ·t

ρ
ik·θik·e

x
′
ik·ξ1+w

′
ik·bi

· 1

(2 · π)ni/2· | Σ−1
i |1/2

· e−
1
2
·(yi−Xi·ξ2−Zi·bi)

′ ·Σ−1
i ·(yi−Xi·ξ2−Zi·bi). (6.6)

After some derivations (Appendix D.1.1), it can be shown that the marginal ESPM distri-
bution obtains a closed form, i.e., formula (D.6). While the marginal probabilities could
be directly specified for estimation through maximum likelihood, the existence of infinite
series, as can be seen from the expressions in Appendix D.1.1, may make the approach in-
tractable. Therefore, due to the ease of analytical integration over the conjugate random
effects, and the availability of software that can numerically integrate over normal ran-
dom effects (e.g., adaptive Gaussian quadrature), partial marginalization (Molenberghs
et al, 2007 and 2010) can be used. In this approach, only the expression for the joint
distribution marginal over the conjugate but conditional on the normal random effects is
needed, which in this case is given by

f(yi, ti | bi) =
1

(2 · π)ni/2· | Σ−1
i |1/2

· e−
1
2
·(yi−Xi·ξ2−Zi·bi)

′ ·Σ−1
i ·(yi−Xi·ξ2−Zi·bi)

·
pi∏
k=1

λ · ρ · tρ−1
ik · ex

′
ik·ξ1+w

′
ik·bi · α(

λ · tρik · ex
′
ik·ξ1+w

′
ik·bi + 1

β

)α+1

· βα
. (6.7)

6.3.2 Case 2: Joint Hierarchical Multilevel Model for Repeated
Binary Outcomes and Repeated Time-to-Event Data

A similar approach can be used to obtain an ESPM for repeated binary and repeated time-
to-event outcomes. For similarity, Tik is defined as the repeated time-to-event outcome
for the kth survival time in cluster i (k = 1, . . . , pi). The repeated binary outcome is here
denoted by Yij (either 0 or 1), for the jth measurement in cluster i (j = 1, . . . , ni). The
WGN model from Section 6.3.1 is adopted to model the repeated time-to-event outcome
Tik. For the repeated binary outcome Yij, the probit-beta-normal (PBN) model will be
used. A general formulation of the PBN is given by

Yij | bi, θij ∼ Bernoulli(πij), (6.8)

πij = θij · Φ(x
′

ij · ξ2 + z
′

ij · bi), (6.9)

bi ∼ N(0, D), (6.10)

θij ∼ Gamma(α1, β1). (6.11)
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where Φ(·) is the cumulative distribution function of the normal distribution and the
parameters of the Gamma distribution, i.e., α1 and β1, are held fixed to avoid over-
parametrization. Molenberghs et al (2010) pointed out that closed-form expressions exist
for the mean, variance and marginal distribution of the PBN model, making this method-
ology mathematically convenient to use. Even though the logit-beta-normal (LBN) model
does not possess this property, Johnson and Kotz (1970) showed that

ey

1 + ey
≈ Φ1(c · y), (6.12)

with c = (16 ·
√

3)/(15 · φ), indicating that the LBN model can be used as mathemati-
cally convenient alternative for modeling the repeated binary outcome Yij. Additionally,
shared normal random effects are considered in the same generic way as Section 6.3.1,
while, conditionally on these shared normal random effects, both models are assumed
independently of each other.

By integrating out the beta random effects from the PBN model (6.8)–(6.11), it can easily
be shown that

f(yij | bi) =
1

α1 + β1

· (Kij · α1)yij · [(1−Kij) · α1 + β1]1−yij , (6.13)

with

Kij = Φ(x
′

ij · ξ2 + z
′

ij · bi). (6.14)

The joint conditional ESPM can then be formulated by

f(yi, ti | bi,θi) =

pi∏
k=1

λ · ρ · θik · tρ−1
ik · e

x
′
ik·ξ1+w

′
ik·bi · e−λ·t

ρ
ik·θik·e

x
′
ik·ξ1+w

′
ik·bi

·
ni∏
j=1

1

α1 + β1

· (Kij · α1)yij · [(1−Kij) · α1 + β1]1−yij . (6.15)

The conditioning here is only on the gamma and normal random effects, given that the
beta random effects in the PBN model (6.8)–(6.11) has been integrated out.

Similar to the first case (Section 6.3.1), closed-form expressions can be derived for the
marginal ESPM distribution (depending on the situation). For example, when the binary
outcome repeatedly measures 1, i.e., yi = (1, 1, . . . , 1) = 1, a closed-expression is derived
for the marginal ESPM distribution (Appendix D.1.2). Due to the existence of infinity
series in this marginal ESPM distribution, i.e., formula (D.11), partial marginalization
can be chosen to conduct inferences (similar to Section 6.3.1). Integrating out the Gamma
random effects in (6.15), lead to the joint distribution conditional on the normal random
effects:
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f(yi, ti | bi) =

ni∏
j=1

1

α1 + β1

· (Kij · α1)yij · [(1−Kij) · α1 + β1]1−yij

·
pi∏
k=1

λ · ρ · tρ−1
ik · ex

′
ik·ξ1+w

′
ik·bi · α1(

λ · tρik · ex
′
ik·ξ1+w

′
ik·bi + 1

β1

)α1+1

· βα1
1

. (6.16)

6.4 Basic Building Blocks for Population-Averaged

Interpretations

Analogous to Section 6.2, a similar approach can be followed for population-averaged
interpretations. Unlike the subject-specific methodology, a few changes need to be made
for (6.1) and (6.3) (according to Section 5.1).

Assuming the same terminology as before (Section 6.2), i.e., two longitudinal outcomes
Y1ij and Y2ik, and by modeling these with the COMMM of Section 5.1, the ESPM for
population-averaged interpretations can generally be expressed by the following three
parts:

η1ij = ∆1ij + z
′

1ij · b1i, (6.17)

η2ij = ∆2ij + Λ · z′2ij · b2i, (6.18)[
b1i

b2i

]
∼ N

([
0
0

]
,

[
D11 D12

D12 D22

])
. (6.19)

Here, ∆1ij and ∆2ij represent the connector function between (5.2) and (5.3) for outcome
Y1ij and Y2ik, respectively. While the same comments hold as for the subject-specific
approach (Section 6.2), a population-averaged interpretation is now present for the fixed-
effects parameters ξ1 and ξ2 of the first outcome and second outcome, respectively.

Efendi et al (2012) used this approach to supplement the work of Njagi et al. (2012) by
proposing a marginalized joint model for longitudinal continuous and repeated time-to-
event outcomes, as well as a marginalized joint model for bivariate repeated time-to-event
outcomes. While the former one was used for testing a joint effect of heart rhythm on
repeated time-to-hospitalization as well as on the longitudinal heart rate of chronic heart
failure (CHF) patients, the latter one was conducted on the comet assay for modeling the
percentage of tail intensity and tail moment together.

6.5 Applications

6.5.1 Case 3: Joint Marginalized Multilevel Model for Bivari-
ate, Repeated Time-to-Event Data

Nowadays, extensive research has been done on the ESPM for bivariate, repeated time-
to-event data. For example, Ghebretinsae et al (2012) used the ESPM framework to
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model the tail length and tail intensity in the comet assay data. In this setting, the
so-called Weibull-Gamma-Multivariate-Normal model (WGMNM) for subject-specific in-
terpretations was proposed, with the use of random-intercepts in the linear parts. Closed
form expressions and derivations have been given for the correlation between both end-
points and intraclass correlation (ICC). Efendi et al (2012) redefined this methodology
for population-averaged interpretations (Section 6.4).

Let Y1ij be the jth survival time in cluster i (j = 1, ..., pi) of outcome 1 and Y2ik represent
the kth survival time in cluster i (k = 1, ..., ni) of outcome 2. The marginalized WGN
model (Section 5.1) is used to model both outcomes Y1ij and Y2ij separately, conditional
upon the normal random effects. Equivalent as before (Section 6.3.1), the parameters
of the Gamma random effects are kept constant, i.e., θ1ij ∼ Gamma(α1, β1) and θ2ik ∼
Gamma(α2, β2), and the scale and shape parameters are assumed fixed between members
of a cluster, i.e., λ1, ρ1, λ2 and ρ2, in order to avoid over-parametrization. Furthermore, the
gamma random effects are assumed to be independent of each other, and also independent
from the normal random effects. Other choices can be made as well. At last, both shared
and correlated random effects are encompassed in the joint model.

The conditional ESPM density can be expressed as:

f(y1i,y2i | b1i,b2i,θ1i,θ2i) =

pi∏
j=1

λ1 · ρ1 · θ1ij · yρ1−1
1ij · e∆1ij+z

′
1ij ·b1i · e−λ1·y

ρ1
1ij ·θ1ij ·e

∆1ij+z
′
1ij ·b1i

·
ni∏
k=1

λ2 · ρ2 · θ2ik · yρ2−1
2ik · e

∆2ij+z
′
2ik·b2i · e−λ2·y

ρ2
2ik·θ2ik·e

∆2ik+z
′
2ik·b2i

.

(6.20)

Due to the mutually independency of the gamma distributed components, the derivation
of the marginal ESPM distribution simplifies to:

f(y1i,y2i) =
∑

(m11,...,m1ni
)

ni∏
j=1

(−1)m1j

m1j!
· Γ(α1 +m1j + 1) · βm1j+1

1

Γ(α1)
· (λm1j+1

1 · ρ1 · y
(m1j+1)·ρ1−1
1ij )δ1i

· (λm1j

1 · yρ1·m1j

1ij )1−δ1i · e(m1j+δ1i)·∆1ij+
1
2
·z′1ij ·D11·z1ij ·(m1j+δ1i)

2 ·
∑

(m21,...,m2ni
)

pi∏
k=1

(−1)m2j

m2j!

· Γ(α2 +m2j + 1) · βm2j+1
2

Γ(α2)
· (λm2j+1

2 · ρ2 · y
(m2j+1)·ρ2−1
2ij )δ2i · (λm2j

2 · yρ2·m2j

2ij )(1−δ2i)

· e(m2j+δ2i)·∆2ij+
1
2
·z′2ij ·D22·z2ij ·{(m2j+1)2·δ2i+[m2

2j ·(1−D2
12)+D2

12·m2j ]
(1−δ2i)}

· e(z
′
1ij ·|D11|1/2·z1ij)·(z

′
2ij ·|D22|1/2·z2ij)·D12·(m1j+δ1i)·(m2j+δ2i). (6.21)

Due to the existence of infinite series in this marginal ESPM distribution, i.e., formula
(6.21), partial marginalization can be chosen to conduct inferences (similar to Section
6.3.1 and Section 6.3.2).

Even though the association between both outcomes is captured by the bivariate normal
random effects, i.e., formula (6.19), the correlation between the two random effects b1i
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and b2i is not necessarily equal to the correlation between the two responses y1i and y2i.
Furthermore, a significant correlation at the cluster level does not necessarily imply a
significant correlation between the two responses taken from the same cell. Therefore,
special attention is given to the expressions and derivations of (1) the correlation between
two measurements from the same outcome for a single cluster, also called the intraclass
correlation (ICC), and (2) the correlation between the two outcomes of the same cluster
measurement.

In this section, explicit expressions and derivations are presented for the random-intercept
approach, where censoring is not present in both outcomes (Appendix D.2). Mathemati-
cally, the linear part for the two outcomes Y1ij and Y2ik and bivariate normal distribution
for the two random effects of this approach are expressed by

η1ij = ∆1ij + b1i, (6.22)

η2ij = ∆2ij + b2i, (6.23)[
b1i

b2i

]
∼ N

([
0
0

]
,

[
d2

1 r · d1 · d2

r · d1 · d2 d2
2

])
, (6.24)

with

∆1ij = −log(α1 · β1) + x
′

1ijξ
m
1 −

d2
1

2
,

∆2ij = −log(α2 · β2) + x
′

2ijξ
m
2 −

d2
2

2
.

Here, d2
1 and d2

2 represent the variances of the cluster-specific random intercepts b1i and b2i,
respectively, while r expresses the correlation between them. For reasons of identifiability
(Duchateau and Janssen, 2007), αv · βv = 1 is chosen (v = 1, 2). Focus is given on the
relationship between the correlation among the outcomes and the correlation among the
random effects.

While Fitzmaurice et al (2009) showed that, for a joint model based on two linear mixed
model, the bivariate correlation between the two outcomes can be expressed by r ·

√
ICC1 ·√

ICC2, where ICC1 and ICC2 denotes the intraclass correlation for outcome 1 and 2,
respectively, Ghebretinsae et al (2012) extended this approach for (6.22) − (6.24). The
remainder of this section is devoted on this approach.

1. The correlation between two measurements from the same outcome for a single
cluster

The intraclass correlation (ICC) equals to

Corr(Ylij, Ylik) =
ed

2
l /ρ

2
l − 1

2·ρl·B(αl− 2
ρl
, 2
ρl

)·ed
2
l
/ρ2
l

B(αl− 1
ρl
, 1
ρl

)2 − 1

, (6.25)
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with l = 1, 2 and B(·, ·) the beta function. Moreover, αl, ρl and d2
l represent the

conventional shape parameter of the Gamma random effects distribution, shape
parameter of the Weibull distribution, and random-effects variance of outcome l,
respectively.

2. The correlation between the two outcomes of the same cluster measurement

The correlation between the two outcomes of the same cluster measurement is ex-
pressed by

Corr(Y1ij, Y2ij) =
(
e
r·d1·d2
ρ1·ρ2 − 1

)
×

B
(
α1 − 1

ρ1
, 1
ρ1

)
[
2 · ρ1 ·B

(
α1 − 2

ρl
, 2
ρl

)
· ed2

1/ρ
2
1 −B

(
α1 − 1

ρ1
, 1
ρl

)2
]1/2

×
B
(
α2 − 1

ρ2
, 1
ρ2

)
[
2 · ρ2 ·B

(
α2 − 2

ρ2
, 2
ρ2

)
· ed2

2/ρ
2
2 −B

(
α2 − 1

ρ2
, 1
ρ2

)2
]1/2

=

(
e
r·d1·d2
ρ1·ρ2 − 1

)
(
ed

2
1/ρ

2
1 − 1

)1/2 ·
(
ed

2
2/ρ

2
2 − 1

)1/2
·
√

ICC1 ·
√

ICC2. (6.26)

Thus, the correlation between the two endpoints is proportional to the correlation
between the two random effects, with the same sign. In other words, the correlation
between the two endpoints is entirely induced by the correlation between the two
random effects. Additionally, this correlation also depends on the Weibull shape
parameters ρ1 and ρ2, and variance and covariance elements of the bivariate normal
distribution for the random effects, i.e., d2

1, d2
2 and r · d1 · d2.

6.5.2 Case 4: Joint Marginalized Multilevel Model for captur-
ing Informative Censoring Mechanisms in Overdispersed,
Repeated Time-to-Event Data

Most statistical methods for censored time-to-event data almost invariably assume that
there is no dependency present between the lifetime and censoring mechanisms, an as-
sumption that is often doubtful in practice. Standard modeling techniques like the Cox
proportional hazard model (Cox, 1972) rely on this assumption and needed to be han-
dled with careful attention. In clinical trials, for example, it often occurs that patients
withdraw from the study. A possible reason is the better conditional state of the patient
at that moment, such that no further medical attention is needed. In this case, the event
that was proceeded before the censoring may have a significant effect, and may increase
the expected remaining lifetime. Lagakos (1979) formulate an amount of examples where
the assumption of non-informative censoring is doubtful.
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Until now, non-informative censoring was assumed for the hierarchical and marginalized
WGN model of Section 4.1 and Section 5.1, respectively. Dealing with informative cen-
soring substantially increases the complexity of modeling. In the past, several methods
have been described to deal with the problem of informative censoring. These include
imputation techniques for missing data, sensitivity analyses to mimic best and worst-case
scenarios and use of the drop-out event as a study end-point (Shih, 2002). In this sec-
tion, a new approach is developed, by defining an ESPM that captures the occurrence of
informative censoring in an overdispersed, repeated time-to-event data structure. Similar
as before, focus will be given on right censoring.

Let Tij be the jth (known) lifetime in cluster i, Cij represents the jth censored time
for cluster i and Iij denotes the jth censored indication in cluster i (i = 1, . . . , N ; j =
1, . . . , ni), which equals to 0 if Tij ≤ Cij and 1 if Tij > Cij. The jth time-to-event outcome
Yij for cluster i can then simply be formulated by

Yij = min(Tij, Cij) =

{
Tij , if Tij ≤ Cij
Cij , if Tij > Cij

. (6.27)

The marginalized WGN model from Section 5.1 is used to model outcome Yij. For the re-
peated binary outcome Iij, an extended version of a marginalized specified logistic-normal
model (Heagerty, 1999; Heagerty and Zeger, 2000) will be used, that allows different link
functions for the marginal and conditional specification (Griswold and Zeger, 2004). Here,
a logit link function is chosen for the marginal model and a probit link is used for the
conditional model. In this case, the odds ratio interpretation of the marginal parameters
retains while taking advantage of the computational ease emanating from the probit-
normal relationship. A closed form expression is derived for the connector function ∆2ij

(of Iij), formulated by

∆2ij =
√

1 + z
′
2ij ·D22 · z2ij · Φ−1[expit(x

′

2ij · ξm2 )], (6.28)

with x2ij and z2ij the p- and q-dimensional vectors of known covariate values, ξm2 the
marginal fixed-effects parameters and D22 the variance-covariance matrix of the random
effect b2i for outcome Iij. Additionally, Φ−1(·) denotes the conventional probit link func-
tion. A general formulation of this model is expressed by

logit(µm2ij) = x
′

2ij · ξm2 , (6.29)

Φ−1(µc2ij) =
√

1 + z
′
2ij ·D22 · z2ij · Φ−1[expit(x

′

2ij · ξm2 )] + z
′

2ij · b2i, (6.30)

with µm2ij = E(Iij), i.e., the marginal mean of Iij, and µc2ij = E(Iij | bi), i.e., the
conditional mean of Iij. This model, i.e., (6.29)–(6.30), enjoys a likelihood basis and
allows derivation of the full probability distribution for the response (Fitzmaurice and
Laird, 1993; Molenberghs and Lesaffre, 1994). Furthermore, Iddi and Molenberghs (2012)
pointed out that the model produces valid inferences when data are missing at random
(MAR). A comprehensive discussion of this missing value taxonomy will be given in Chap-
ter 7.

Conditionally on the shared normal random effects, the marginalized WGN model (for
modeling time-to-event outcome Yij) and model (6.29)–(6.30) (for modeling the binary
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outcome Iij) are assumed independent. Similar as before (Section 6.3.1), both shared and
correlated random effects are encompassed in the model. A general formulation of this
framework is given by

µc1ij = θ1ij · exp
[
x
′

1ij · ξm1 − (z
′

1ij ·D11 · z1ij)/2− log(α1 · β1) + z
′

1ij · b1i

]
, (6.31)

µc2ij = Φ
{√

1 + z
′
2ij ·D22 · z2ij · Φ−1[expit(x

′

2ij · ξm2 )] + Λ · z′2ij · b2i

}
, (6.32)[

b1i

b2i

]
∼ N

([
0
0

]
,

[
D11 D12

D12 D22

])
, (6.33)

with µc1ij = E(Yij | b1i), i.e., the conditional mean of time-to-event outcome Yij, and
µc2ij = E(Iij | bi), i.e., the conditional mean of binary outcome Iij. Similar as before
(Section 6.5.1), the same assumptions are made. Other choices can be made as well.

This technique enables us (1) to capture the informative censoring by the correlated nor-
mal random effects and (2) obtain parameter estimates that have a population-averaged
interpretation for both outcomes. Estimation strategies such as maximum likelihood es-
timation with partial marginalization (Section 4.2.1), pairwise likelihood (Section 4.2.2)
and Bayesian estimation (Section 4.2.3) can be performed.
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Chapter 7

A Characterization of Missingness at
Random in a Generalized
Shared-Parameter Joint Modeling
Framework for Longitudinal and
Time-to-Event Data

Statistical modeling is often connected with the complexity of missing data. In this chap-
ter, a conceptual correspondence is described between the missing data setting, and joint
modeling of longitudinal and time-to-event outcomes, according to Njagi et al (2013c).
Hereby, a formulation is presented of an extended shared random effects joint model, simi-
lar to that of Creemers et al. (2011) in the context of longitudinal data subject to missing
observations. A characterizations of missing at random (MAR) is provided within the
missing data setting. While an additional complexity arises in the joint longitudinal and
time-to-event setting, i.e., coarsening (see Chapter 10 for a more profound discussion), an
avenue for sensitivity analyses is considered.

The chapter is organized as follows. In Section 7.2, a brief review is given on missing
data. In particular, attention is provided on the different modeling frameworks and the
characterization of MAR in each of these frameworks. The generalized shared-parameter
modeling (GSPM) framework of Creemers et al. (2011), and its MAR characterization,
are discussed as well. In Section 7.3, three main scenario’s are examined to illustrate
the correspondence between joint modeling of longitudinal and time-to-event data, and
missing data. First, the extended framework of Njagi et al (2013c) is defined, alongside
with the corresponding MAR characterization. At last, in Section 7.4, an avenue for
sensitivity analyes is provided for this setting.

7.1 Introduction

Missing data often occur in practical situations, and need to be taken into account when
proceeding with statistical inference. In the past, three main models have been developed
in the missing data setting, and will be considered as starting point in this chapter.
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When missingness is present in the data, models are often catalogued in one of the follow-
ing three modeling frameworks: (1) selection models (SEM), (2) pattern-mixture models
(PMM) and (3) shared-parameter models (SPM). While the former two approaches are
defined by different factorizations of the joint distribution of the data and the missing
value processes, the latter one is defined by assuming that both data and the missing value
process depend on latent variables, conditional upon which independence is assumed.

Within the SEM, Rubin (1976) classified the missing value processes into several parts. In
a frequentist approach (Section 3.5.1), with outcomes only missing, the classification can
be expressed in three parts: (1) Missing completely at random (MCAR), meaning that,
conditional upon covariates, the missing value mechanism does not depend on outcomes,
(2) missing at random (MAR), meaning that, conditional on covariates and observed
outcomes, the missing value mechanism does not further depend on missing outcomes,
and (3) missing not at random (MNAR), implying that, conditional on covariates and
observed outcomes, the missing value mechanism does depend on unobserved outcomes.
Since Rubin (1976) developed these processes within the SEM, Molenberghs et al (1998)
and Creemers et al (2011) transposed this taxonomy to the PMM and SPM framework,
respectively.

For the particular case of longitudinal data with dropout, Molenberghs et al (1998) de-
rived a set of so-called identifying restrictions, to identify the model for the missing mea-
surements given the observed ones within a missing-data pattern, consistent with MAR.
Furthermore, Molenberghs et al. (2007) showed that for every MNAR model, there is an
MAR counterpart that produces exactly the same fit to the observed data in the PMM
framework. Hence, the original model and its MAR counterpart cannot be distinguished
from one another. Creemers et al (2011), on the other hand, showed that a similar con-
nection can be made with the MAR counterpart in the sense of Molenberghs et al (2007),
but now in the SPM framework.

Since this thesis partly focuses on the joint modeling of longitudinal and time-to-event
data, questions arises whether a characterization of MAR is present in a generalized
shared-parameter joint modeling framework for longitudinal and time-to-event data. Dif-
ferentiating from the other provided research, the joint longitudinal and time-to-event
setting is slightly different, given that a time-to-event is also collected. Therefore, the
objective may be three-fold, i.e., (1) to study the time-to-event outcome, accounting for
the longitudinal covariate, (2) to study the longitudinal outcome, accounting for pos-
sibly non-random drop-out caused by the occurrence of events and (3) to examine the
association structure between both outcomes (Tsiatis and Davidian, 2004).

Focuses on the most common one of the three, i.e., the first one, Njagi et al (2013c) noted
that the objective is usually achieved within the SPM framework, where, conditional on
a shared latent structure, e.g., a normal random effect, a sub-model for the time-to-event
outcome is fitted independently upon the longitudinal process. Both outcomes are linked
by the shared latent structure (Tsiatis and Davidian, 2004). However, attention needs to
be given here. For example, Njagi et al (2013c) mentioned that the longitudinal covariate
may be measured with error, its values are likewise only available at the specific time
points at that the patient appears at the clinic for longitudinal measurements, and the
time-to-event may also be censored.
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Although the occurrence of pre-defined error determination in the longitudinal process
is often problematic in making correct inferences about the time-to-event outcome, the
joint density incorporates both censoring and the visiting and measurement probabilities
(Tsiatis and Davidian, 2004), where the visiting probabilities represent the process which
generate the time points at which measurements are available (Rizopoulos, 2012a). In
order to identify the relationship of interest, it is assumed that, under likelihood inference,
the probabilities of censoring and visiting can depend on past visit times and longitudinal
measurements, but not further on the future longitudinal measurements and event time
(Tsiatis and Davidian, 2004). From these statements, Njagi et al (2013c) pointed out that
the above mentioned conditions mirror the MAR assumption mentioned earlier. Since the
assumptions are unverifiable based on the data, equivalent to the unverifiable assumptions
about the missing value mechanism in the missing data setting, sensitivity analysis is a
recurring theme here (Verbeke and Molenberghs, 2000; Molenberghs and Verbeke, 2005).

From the discussion above, it can be said that a strong connection between the joint
longitudinal and time-to-event and missing data setting is present. To stay in line with the
followed approach of Njagi et al (2013c), a slightly different perspective on joint models is
taken than is prevalent in the literature. However, conceptually, the two settings actually
correspond. By using the shared random effects joint model of Creemers et al. (2011)
as starting point in the context of longitudinal data subject to missing data, Njagi et al
(2013c) formulated an extended shared random effects joint model for longitudinal and
time-to-event setting, where an added layer of complexity, i.e., coarsening, meaning that
the actually observed data is less detailed than what is planned, can be present in the
data. For example, the time-to-event outcome can be censored, and/or the longitudinal
profiles may be incomplete. In statistical terminology, coarsening can be seen as one of
the two basic aspects of enriched data. A full discussion of this terminology can be found
in Chapter 10.

Within the extended framework of Njagi et al (2013c), a characterization of MAR is
provided, consistent to the one in the missing data setting. Since the missing data setting
empowers a lot of terminology, a brief discussion is first provided!

7.2 General discussion on missing data terminology

7.2.1 Notation and Modeling Frameworks

Similar as before (Section 3.2), let Yij represent the jth outcome measured for cluster
(subject) i, i = 1, . . . , N , j = 1, . . . , ni. To account for the missing data process in the
data, assume Rij to be a missingness indicator, which indicates 1 if Yij is observed, and 0
otherwise. Thus, vectors Yi and Ri represent the measurement and missingness process
for subject i, respectively. Moreover, vector Yi is partitioned into two vectors Y0

i and
Ym
i , containing the observed and unobserved components, respectively, and θ and ψ

be the parameter vectors for the measurement and missingness processes, respectively.
Suppressing the covariate xi from notation and expressing f(yi, ri | θ,ψ) as the full data
density, a general discussion can be made for the missing data modeling frameworks.
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In the missing data setting, models are often catalogued in three modeling frameworks.
The first one, known as the selection model (SEM), starts from the factorization f(yi, ri |
θ, ψ) = f(yi | θ) · f(ri | yi, ψ). In the second one, also called the pattern-mixture
model (PMM), a slightly different factorization scheme is used, i.e., f(yi, ri | θ, ψ) =
f(yi | ri,θ) · f(ri | ψ). For the last one, called the shared-parameter model (SPM), a
vector of shared latent variables bi is present, conditional upon which independence of
the measurement and missingness processes is assumed, i.e.,

f(yi, ri | θ, ψ) =

∫
f(yi | bi,θ) · f(ri | bi, ψ) · f(bi) · dbi. (7.1)

7.2.2 Characterization of Missing at Random

Within each discussed framework, MAR can be defined. Under the SEM, the missing
data mechanism is defined as MAR if f(ri | yi, ψ) = f(ri | y0

i , ψ). In the case of PMM
(Molenberghs et al, 1998), missingness is defined MAR if

f(ymi | y0
i , ri,θ) = f(ymi | y0

i ,θ). (7.2)

In other words, MAR in PMM can be seen in such a way that the unobserved outcomes
can be predicted from the observed outcomes and covariates, without further reference to
the missingness mechanism.

In the SPM framework, i.e., (7.1), Creemers et al (2011) and Njagi et al (2013c) pointed
out that MAR cannot hold without reducing to MCAR, where bi drops from at least
one of the factors in the integrand of (7.1). Therefore, Creemers et al (2011) generalized
the SPM by expanding the random-effects structure, and called it the generalized SPM
(GSPM) framework:

f(yi, ri | gi,hi, ji,ki, li,mi,qi) = f(y0
i | gi,hi, ji, li) · f(ymi | y0

i ,gi,hi,ki,mi)

· f(ri | gi, ji,ki,qi). (7.3)

A few comments are in place here. First, a more general random-effects structure is
present, where the random effects gi are shared among all processes, hi, ji and ki are
shared between two processes only, and li, mi and qi are specific to one process. Second,
a general condition can be made for MAR. Creemers et al (2011) denoted that GSPM is
MAR of and only if∫

f(y0
i | gi,hi, ji) · f(ymi | y0

i ,gi,hi,ki) · f(ri | gi, ji,ki) · f(bi) · dbi∫
f(y0

i | gi, ji) · f(ri | gi, ji) · f(bi) · dbi
=∫

f(y0
i | gi,hi) · f(ymi | y0

i ,gi,hi) · f(bi) · dbi
f(y0

i )
. (7.4)

Third, the following convenient proper sub-class of GSPM (7.3) exists that satisfies MAR:

f(yi, ri | gi,hi, ji,ki, li,mi,qi) = f(yi, ri | ji, li,mi,qi)

= f(y0
i | ji, li) · f(ymi | y0

i ,mi) · f(ri | ji,qi). (7.5)
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7.3 Joint Modeling of longitudinal and time-to-event

data

While Creemers et al (2011) limited their discussion of GSPM in the context of of longitu-
dinal data subject to missing data, Njagi et al (2013c) extended this to the joint modeling
setting of longitudinal and time-to-event data. Here, three scenarios have been used to
illustrate and motivate the correspondence between the joint modeling of longitudinal and
time-to-event data and that of missing data. Since other scenarios are possible as well,
this thesis only considers to these three scenarios.

The following three scenarios are used:

1. For subjects who drop out before the planned end of the study, longitudinal infor-
mation prior to drop-out is observed, as well as the censoring time. Neither the
latter part of the longitudinal sequence nor the survival time is present for these
subjects.

2. For subjects who experience the event within the study period, such that the event
censors the longitudinal sequence, longitudinal information prior to the event is
observed, as well as the survival time. Longitudinal data after the event, as well as
the censoring time, are unobserved for these subjects.

3. For subjects who reach the end of the study without experiencing the event, full
longitudinal information as well as the censoring time are observed. The survival
time remains unobserved for these subjects.

These three possible outcomes imply that the joint modeling of longitudinal and time-
to-event always entails two parts, i.e., (1) a part that is observed and (2) a part that is
unobserved. Furthermore, the mechanism that causes the coarsening, consisting of the
union of the missingness mechanism in the longitudinal outcome, and a certain choice
mechanism, related to the time- to-event outcome, which determines whether either the
event time or censoring time is observed, must also need to be taken into account. As can
be examined, complexity exponentially grows when dealing with more advanced settings.

Since the notation of Section 7.2.1 does not fully describe the joint modeling setting
of Njagi et al (2013c), additionally notations are added. First, let Ti and Ci represent
the survival and censoring times, respectively. Second, let D0

i = min(Ti, Ci) and Dm
i =

max(Ti, Ci). Third, a vector of missingness indicators is introduced, i.e., R∗i = (R
′
i,Wi)

′
,

where Wi = 1 if the survival time is observed and 0 otherwise. With these additionally
variables, the full set of (stochastic) defined components equals

Qi =
(
Y0′

i ,Y
m′

i , D0
i , D

m
i ,R

∗′
i

)′
=
(
Z0′

i ,Z
m′

i ,R
∗
i

)′
, (7.6)

where Z0
i = (Y0′

i , D
0
i )
′

and Zm
i = (Ym′

i , Dm
i )
′
. By grouping the full set into these three

components, Njagi et al (2013c) produced a way to represent the information in a form that
parallels that for incomplete longitudinal data, with each of the three vectors combining
both longitudinal and time-to-event information.
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7.3.1 The Extended Framework

Similar to Njagi et al (2013c), the following shared random-effects model is considered for
this setting:

f(y0
i ,y

m
i , d

0
i , d

m
i , r

∗
i | bi) = f(y0

i | bi) · f(ymi | y0
i ,bi) · f(d0

i | bi) · f(dmi | d0
i ,bi) · f(r∗i | bi),

(7.7)

where bi encompasses an elaborate random effects structure, consisting of 31 sets of ran-
dom effects, i.e., 1 shared between all five components, 5 shared between four components,
10 shared between three components, 10 shared between two components, and 5 specific
to a single component. Furthermore, the random effects are assumed independent. The
main advantage of obtaining such a modeling framework is that appropriate subsets of
random effects can be chosen so that MAR holds (Njagi et al, 2013c).

A few comments are in place. First, it can be noted that model (7.7) is the generic shared
random-effects model for this setting under this factorization. Such a general structure
implies, that at the time of drop-out, there are processes which may stop, while other
processes may get modified. Second, model (7.7) is based on conditional independence
assumptions, i.e, given the collection of random effects bi, the processes yi, di, and ri
are independent of one another. If all 31 random effects would be present, there still
would be a rich association structure present between the various outcomes, which may
be simplified by omitting one or more of these components, as will be done to allow for
MAR in the next section. For a extended discussion on comments, reference is made to
Njagi et al (2013c).

7.3.2 Characterization of Missing at Random

The extended model (7.7) allows for a characterization of MAR, in the same spirit as
(7.4). To define MAR, either SEM-based or PMM-based factorization of the model can
be considered (Njagi et al, 2013c). Under a SEM factorization, the requirement is:

f(r∗i | y0
i ,y

m
i , d

0
i , d

m
i ) = f(r∗i | y0

i , d
0
i ), (7.8)

implying that

f(y0
i ,y

m
i , d

0
i , d

m
i , r

∗
i )

f(y0
i ,y

m
i , d

0
i , d

m
i )

=
f(y0

i , d
0
i , r
∗
i )

f(y0
i , d

0
i )

. (7.9)

Under a PMM factorization, the requirement equals:

f(y0
i ,y

m
i , d

0
i , d

m
i , r

∗
i )

f(y0
i , d

0
i , r
∗
i )

=
f(y0

i ,y
m
i , d

0
i , d

m
i )

f(y0
i , d

0
i )

. (7.10)

Using the specific form of (7.7), MAR holds if and only if
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∫
f(y0

i | bi) · f(ymi | y0
i ,bi) · f(d0

i | bi) · f(dmi | d0
i ,bi) · f(r∗i | bi) · f(bi) · dbi∫

f(y0
i | bi) · f(d0

i | bi) · f(r∗i | bi) · f(bi) · dbi
=∫

f(y0
i | bi) · f(ymi | y0

i ,bi) · f(d0
i | bi) · f(dmi | d0

i ,bi) · f(bi) · dbi∫
f(y0

i | bi) · f(d0
i | bi) · f(bi) · dbi

.

(7.11)

7.3.3 A Specific Sub-class of the GSPM

Looking for an interesting sub-class of the extended model (7.7), Njagi et al (2013c)
proposed the following sub-class:

f(y0
i ,y

m
i , d

0
i , d

m
i , r

∗
i | bi) = f(y0

i | gi,hi,ki) · f(ymi | y0
i ,mi) · f(d0

i | gi,hi, li)
· f(dmi | d0

i ,mi) · f(r∗i | gi,ki, li), (7.12)

where gi, hi, ki, li and mi are part of the (earlier described) 31 random effects set. Here,
the random effects driving the missing-data components ymi and dmi do not appear in any
of the other three stochastic components. Furthermore, similar to the extended GSPM
(7.7), Njagi et al (2013c) shown that the MAR property is satisfied. Their derivations
will be given here.

Denoting b̃i and b̄i as the sets of random effects {gi,hi,ki, li,mi}, and {gi,hi,ki, li},
respectively. Under a SEM-based factorization, it follows that

f(r∗i | y0
i ,y

m
i , d

0
i , d

m
i ) =

f(y0
i ,y

m
i , d

0
i , d

m
i , r

∗
i )

f(y0
i ,y

m
i , d

0
i , d

m
i )

(7.13)

=

∫
b̃i
ϕ1 · ϕ2 · ϕ3 · ϕ4 · ϕ5 · f(b̃i) · b̃i∫

r∗i

∫
b̃i
ϕ1 · ϕ2 · ϕ3 · ϕ4 · ϕ5 · f(b̃i) · db̃i · dr∗i

(7.14)

=

∫
mi
ϕ2 · ϕ4 · f(mi) ·mi∫

mi
ϕ2 · ϕ4 · f(mi) · dbi

·
∫
b̄i
ϕ1 · ϕ3 · ϕ5 · f(b̄i) · b̄i∫

r∗i

∫
b̄i
ϕ1 · ϕ3 · ϕ5 · f(b̄i) · b̄i · dr∗i

(7.15)

=
f(y0

i , d
0
i , r
∗
i )

f(y0
i , d

0
i )

= f(r∗i | y0
i , d

0
i ), (7.16)

where

ϕ1 = f(y0
i | gi,hi,ki) (7.17)

ϕ2 = f(ymi | y0
i ,mi) (7.18)

ϕ3 = f(d0
i | gi,hi, li) (7.19)

ϕ4 = f(dmi | d0
i ,mi) (7.20)

ϕ5 = f(r∗i | gi,ki, li) (7.21)

From a PMM-based factorization, the following result is pulled forward:
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0
i , r
∗
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(7.22)

=

∫
b̃i
ϕ1 · ϕ2 · ϕ3 · ϕ4 · ϕ5 · f(b̃i) · b̃i∫

dmi

∫
ymi

∫
b̃i
ϕ1 · ϕ2 · ϕ3 · ϕ4 · ϕ5 · f(b̃i) · db̃i · dymi · ddmi

(7.23)

=

∫
mi
ϕ2 · ϕ4 · f(mi) ·mi∫

dmi

∫
ymi

∫
mi
ϕ2 · ϕ4 · f(mi) · dymi · ddmi

(7.24)

·
∫
b̄i
ϕ1 · ϕ3 · ϕ5 · f(b̄i) · b̄i∫

b̄i
ϕ1 · ϕ3 · ϕ5 · f(b̄i) · db̄i

(7.25)

= f(ymi , d
m
i | y0

i , d
0
i ), (7.26)

with ϕ1, . . . , ϕ5 formulated in (7.17)− (7.21). Concluding from these derivations, a suffi-
cient condition for the extended model to satisfy MAR is that the random effects influ-
encing the observed measurements and/or the coarsening mechanism do not influence the
missing measurements, given the observed measurements, i.e., equivalent to the condition
that all information about the missing measurements stems from the observed measure-
ments and covariates only.

7.3.4 An MAR Counterpart to an Extended Shared- parameter
Joint Model for Longitudinal and Time-to-event Data

From the developments of the previous Sections 7.3.2 and 7.3.3, a door opens to the
construction of an MAR counterpart for any member of the extended model (7.7), with
exactly the same fit to the observed data, by integrating over the distribution of the
missing components given the observed ones (Molenberghs et al, 2008). In other words,
to obtain an MAR counterpart for any member of the extended model (7.7), with the
same fit to the observed data, distributions f(ymi | y0

i ,bi) and f(dmi | d0
i ,bi) in (7.7) need

to be changed by

h(ymi | y0
i ,m

∗
i ) =

∫
b∗i

f(ymi | y0
i ,bi) · db∗i ,

h(dmi | d0
i ,m

∗
i ) =

∫
b∗i

f(dmi | d0
i ,bi) · db∗i , (7.27)

respectively. Integration over b∗i equals to the integration over all random effects in the
full set bi, except possibly those that are specific to either ymi , or dmi , or both.

The non-uniqueness does not stem from the model described, but rather from the fact
that the model specifies more than what is available in the data (Molenberghs et al, 2012).
This implies the need for care when analyzing and interpreting results from models with
missing and censored observations, random-effects models, factor-analytic models, etc.
Therefore, apart from goodness-of-fit tests, which describe the model fit of the observed
data, sensitivity analyses is advisable, i.e., a methodology that studies how assumptions
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about unobservables, given the observables, influence the inferences drawn. For exam-
ple, Kenward, Goetghebeur and Molenberghs (2001) examined sensitivity analysis for
incomplete categorical data. In particular, sensitivity analysis for a psychiatric study has
been studied, where the study, i.e., a multicentre study, involves 315 patients that were
treated by fluvoxamine for psychiatric symptoms described as possibly resulting from a
dysregulation of serotonine in the brain (Molenberghs and Lesaffre, 1994). Creemers, et
al (2010), on the other hand, proposed a method for sensitivity analysis within the GSPM
framework. Specifically, they applied it for a chosen modeling scenario in the toenail data
(De Backer et al, 1996), where the methodology used consisted of 5 specific steps. Njagi
et al (2013c).

To conclude this chapter, its worthwhile to mention that Njagi et al (2013) addition-
ally examined their research within the extended framework (7.7) by exploring a narrow
definition of a joint model, and examining its main limitation, i.e., it defies an MAR
characterization. A full discussion on this conclusion can be found in Njagi et al (2013)!
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Chapter 8

Goodness-of-Fit Test for the
Random-Effects Distribution in the
Combined Model

In mixed models, consisting of both random and fixed effects, researchers often rely on the
assumption that the random effects are normally distributed. Misspecifying the random-
effects distribution has modest consequences on maximum likelihood estimators, especially
on generalized linear mixed models. For linear mixed models (Section 3.3.1), Verbeke and
Lesaffre (1997) showed that the estimators of fixed effects and variance components with
normality assumption are consistent and asymptotically normally distributed, even when
the true random effects do not follow a normal distribution. Their asymptotic covariance
matrix, on the other hand, is biased. Additionally, McCulloch and Neuhaus (2011a &
2011b) and Verbeke and Lesaffre (1996) pointed out that there can be serious consequences
on the EB estimation of the random effects. For generalized linear mixed models, Heagerty
and Kurland (2001) and Litière, et al (2008) illustrated that the maximum likelihood
estimators are inconsistent when the distribution of the random-effects is misspecified.
Moreover, increasing the number of random effects expands this problem even more. A
quick overview and examples of the consequences of misspecifying the random-effects
distribution can be found in Grilli and Rampichini (2014) and Agresti et al (2004).

In the last few years, a lot of research has been devoted to checking distributional as-
sumptions about the random-effects. For example, Waagepetersen (2006) introduced a
simulation-based test, by generating random effects while conditioning on the observa-
tions, while Tchetgen and Coull (2006) generated a diagnostic test by comparing marginal
and conditional maximum likelihood estimators of a subset of fixed effects in the model.
Both were created to investigate the suitability of the choice of the random-effects dis-
tribution. Even though a feasible power was found with count data for the former one,
very large cluster and sample sizes were needed for binary data to produce similar results.
The latter one was restricted to those settings where at least one within-cluster covariate
is available. Furthermore, several tests has been derived for model misspecification in
mixed models. Claeskens and Hart (2009) first explored several formal diagnostics that
test the normality assumption of the random effects and/or errors. Adapted traditional
tests for normality such as the Pearson χ2-type tests for mixed models (Jiang, 2001) were
mentioned in detail, alongside with some graphical diagnostics for mixed models (Calvin
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and Sedransk, 1991 & Lange and Ryan, 1989). Secondly, nonparametric tests based on
the order selection concept of Eubank and Hart (1992) were proposed to detect virtu-
ally any alternative to normality, where the nonparametric estimation method that is
used to construct the test provides an estimator of the alternative distribution (in case
of rejection of the null hypothesis). Additionally, White (1982) developed an Information
Matrix Test (IMT) for model misspecification. While third-order partial derivatives of
the likelihood function are required in this test, this can become a sufficient problem when
dealing with complicated likelihood functions, like in generalized linear mixed models. The
use of numerical approximations may be needed, which cumbersome the implementation
techniques in many statistical software packages. To overcome these problems, Alonso,
Litière and Molenberghs (2010) proposed two alternative diagnostic tools, i.e., the so-
called Sandwich Estimator Test (SET) and Modified Information Matrix Test (MIMT),
to detect misspecification in generalized linear mixed models. These tools use the ideas
of the IMT of White (1982), where no third-order partial derivatives of the likelihood are
needed. However, they pointed out that the tests also exhibited inflated type I error rates
when the sample size was small or moderate. A parametric bootstrap version of the tests
seems to overcome this problem, but still require further research.

Alternatively to the testing procedures for checking random-effects distributional as-
sumptions, several efforts have been made in relaxing the parametric assumptions about
the random-effects distribution. Zhang and Davidian (2001) used the so-called semi-
nonparametric representation of a density function as studied by Gallant and Nychka
(1987). To arrive at a proper density function, the estimator appears as a Hermite se-
ries, where the normal density function is multiplied by the square of a polynomial and
suitably normalized. Moreover, Verbeke and Lesaffre (1996) used a finite mixture of nor-
mal density functions to approach the actual random-effects distribution in linear mixed
models. Recently, Ghidey, Lesaffre and Verbeke (2010) compared these two approaches,
together with two additional approaches, i.e., the smoothing by roughening approach of
Shen and Louis (1999) and a flexible approach of Ghidey, Lesaffre and Eilers (2004), via
an extensive simulation study.

In this chapter, attention will be given to the gradient function of Verbeke and Molen-
berghs (2013). This approach serves as a graphical exploratory diagnostic tool to assess
misspecification of the random effects distribution, and is applicable to a wide range of
mixed models (LMM, GLMM, non-linear mixed models), with univariate as well as mul-
tivariate random effects, as long as the conditional distribution for the outcome given
the random effects has been correctly specified. Because the tool only requires maximum
likelihood estimates of the current model and corresponding marginal likelihood function,
easy implementation is present. Moreover, the gradient function is plotted alongside with
confidence bands, pointing out intervals of values of the random effects for which the
distribution is locally misspecified. Additionally, it indicates how a parametric model can
be improved in case of misspecification. Unlike the other mentioned testing procedures
for the random-effects distributional assumptions in mixed models, this tool is informal in
such a way that it should not be interpreted as a formal testing procedure. Efendi, Drik-
vandi, Verbeke and Molenberghs (2014) used this tool to develop a simple diagnostic test
for the random-effects distribution in mixed models. Specifically, the gradient function
will serve as basis for the construction of the proposed formal test.

59



While Section 8.2 is devoted to the gradient function of Verbeke and Molenberghs (2013),
Section 8.3 is used to discuss the formal testing procedure of Efendi, Drikvandi, Verbeke
and Molenberghs (2014). As reminder and starting point to this testing paradigm, a
general review is given on mixed models (Section 8.1).

8.1 Review of the General Mixed Model

Using the same terminology as before (Section 3.3), let Yij denotes the jth measurement
for cluster (subject) i, i = 1, . . . , N , j = 1, . . . , ni and Yi represents the ni-dimensional
vector of all measurements available for cluster (subject) i. In case of time-to-event data,
Yij indicates the jth time-to-event outcome for cluster (subject) i. In mixed models,
similar to Section 3.3, it is assumed that, conditionally on (q x 1)-dimensional vector of
random effects bi, outcome Yi follows a particular pre-specified distribution Fi, possibly
depending on covariates (ξ in previous discussed chapters) and parameterized through a (p
x 1)-dimensional vector θ of unknown parameters, common to all subjects, i.e., Yi | bi ∼
Fi(θ,bi). While previous chapters focused on developing an appropriate conditional model
Yi | bi ∼ Fi(θ,bi), with relevant choices of fixed parameters ξ, unknown parameters θ,
random effects bi and distribution Fi for time-to-event data, this chapter assumes that
the conditional model has been correctly specified. Moreover, random-effects bi follows
a distribution G, denoting the between-unit heterogeneity in the population with respect
to the distribution of Yi.

Suppressing dependency on the vector of unknown parameters θ in notation, let fi(yi | bi)
specify the density function of yi, conditional on bi, and corresponding to distribution
Fi. Likelihood-based inference, e.g., maximum likelihood (Section 4.2.1), for θ is usually
based on the marginal distribution, where the marginal log-likelihood is used as starting
point for the derivations. Assuming independency of the units, the marginal log-likelihood
function is formulated by

`(G) =
N∑
i=1

ln

[∫
b

fi(yi | bi) · dG(bi)

]
. (8.1)

In case of the WGN model (Chapter 4), fi(yi | bi) is replaced by formula (4.9), where
numerical integration techniques, e.g., adaptive Gaussian quadrature (Molenberghs and
Verbeke, 2005), can be used to approximate the integral expression.

Similar to the normal distribution choice for G in the WGN model (Chapter 4), many
researchers often assume a parametric specification of distribution G, characterized by
a vector % of unknown parameters, while others relax the specification even further to
a semi parametric and completely nonparametric, e.g., Mallet, 1986; Butler and Louis,
1992, approach. Chen, Zhang and Davidian (2002) relaxed the assumption of normal
mixed distributions by specifying that the distribution of random effects belong to a class
of smooth densities. The density is thereby approximate by the seminonparametric (SNP)
approach of Gallant and Nychka (1987), allowing it to be skewed, multi-modal, fat- or
thin-tailed relative to the normal distribution. Moreover, they proposed a Monte Carlo
expectation-maximization (EM) algorithm using a rejection sampling scheme to estimate
the fixed parameters of the linear predictor, variance components and the SNP density.
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To check whether the fitted model with marginal log-likelihood `(Ĝ) adequately fits the
data, or whether an alternative mixing distribution, say H, could yield a marginal log-
likelihood `(Ĥ) substantially larger than `(Ĝ), Verbeke and Molenberghs (2013) proposed

the gradient function to graphically check whether `(Ĝ) can be increased substantially by

replacing G by H, i.e., `(H) > `(Ĝ), indicating that the model has been misspecified. A
detailed overview of this framework is given in Section 8.2.

8.2 The Gradient Function

To obtain a complete overview of the developed terminology behind the gradient func-
tion, Verbeke and Molenberghs (2013) started their discussion by defining the directional
derivative of the log-likelihood `(·) at G into the direction H. Due to mathematical
properties, this approach will be adopted here.

For two distribution functions G and H, the directional derivative of the log-likelihood
`(·) at G into the direction H is defined as

Φ(G,H) = lim
α
>→0

`[(1− α) ·G+ α ·H]− `(G)

α
=
∂`[(1− α) ·G+ α ·H]

∂α

∣∣∣∣
α=0

. (8.2)

In other words, formula (8.2) denotes the change that is achieved in the log-likelihood
by replacing the distribution G by the mixture distribution (1 − α) · G + α · H for an
infinitesimal weight α assigned to the distribution H.

A few comments are in place. First, if Φ(Ĝ,H) ≤ 0 hold for all H, no better mixing

distribution than the conducted parametric fit Ĝ can be found. Second, for any two
distribution functions G and H, Verbeke and Molenberghs (2013) showed that the direc-
tional derivative of the log-likelihood `(·) at G into the direction H is proportional to the
gradient function ∆(G,b), which they defined as

∆(G,b) =
1

N
·
N∑
i=1

fi(yi | bi)
fi(yi | G)

(8.3)

and can be interpreted as an average of likelihood ratios, where each ratio measures how
much more likely yi is to be observed for unit i if the corresponding random effect bi
equals b rather than it being sampled from G. Their explicit derivation can be found in
Appendix E.1. More specifically, Verbeke and Molenberghs (2013) denoted that

∆(G,b) =
1

N
· Φ(G,Hb) + 1, (8.4)

where Hb represents the discrete distribution function with all probability mass at b.
Therefore, ∆(G,b) can be seen as the score statistic for comparing the ’null model’ `(G)
to an ’alternative model’ that would assign additional weight to the support point b.
Third, when Φ(Ĝ,H) ≤ 0, a number of properties about the gradient function ∆(G,b)

of Ĝ hold, i.e.,
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Property 1. Φ(Ĝ,H) ≤ 0⇔ ∆(Ĝ,b) ≤ 1 for all possible b

Proof.

⇒ Trivial, since Φ(Ĝ,H) ≤ 0 also holds for H = Hb, i.e., the discrete
distribution function with all probability mass at b.

⇐ Trivial, due to derivation (E.1).

�

Property 2. ∆(Ĝ,b) = 1 in all support points b of Ĝ

Proof. Since Φ(Ĝ, Ĝ) = 0, it follows that
∫
b

∆(Ĝ,b) · dĜ(b) = 1. Due to

property 1, ∆(Ĝ,b) = 1 in all support points b of Ĝ simply implies. �

Property 3. ∆(Ĝ,b) can only have (local) maxima in the region I of Rq,

equal to the Cartesian product of the intervals [bjmin, bjmax]

Proof. If all fi(yi | b), as functions of b = (b1, . . . , bq)
′, have unique modes

b̂i = (̂bi1, ·, b̂iq)′, then let [bjmin, bjmax] be an interval containing all these mode

components b̂ij, j = 1, . . . , q. All fi(yi | b) are then monotone increasing
functions of bj, whenever bj ≤ bjmin and monotone decreasing whenever

bj ≥ bjmax, hence the same holds for ∆(Ĝ,b). This implies that ∆(Ĝ,b) can
only have (local) maxima in the region I of Rq, equal to the Cartesian product
of the intervals [bjmin, bjmax]. Intuitively, this implies that the observed data
can only provide information about the support of the mixing distribution
within the region I. �

With these three properties, Verbeke and Molenberghs (2013) concluded that, if no mixing

distribution H provides a better fit than the conducted parametric fit Ĝ, the gradient
function of Ĝ, i.e., ∆(Ĝ,b), should never exceed 1, and should be exactly equal to 1 in

all support points of Ĝ that are all in the region I. Thus, the fit of a specific distribution
function Ĝ can simply be checked graphically by inspecting its gradient function ∆(Ĝ,b).
If it does not exceed 1, and if it reaches 1 in its support points, then no other mixing
distribution H can provide a better fit for the data.

While most frequently used parametric mixed and combined models assume a (multivari-
ate) normal distribution for G, a finite sample cannot support the fitted normal distri-

bution Ĝ as the best fitting model, because values on the whole real space Rq are taken,
i.e. outside the region I. Even though this seems an problematic issue to the developed
framework, the gradient function can still be used to check whether the fitted distribution
Ĝ provides an adequate fit, within the region I (where the data support probability mass
for the mixing distribution). If no other mixing distribution H can yield a substantially

better fit than the fitted normal Ĝ, the gradient function ∆(Ĝ,b) should be close to
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1 within the region I. To distinguish true deviations from 1, from random variability,
Verbeke and Molenberghs (2013) suggested to use a pointwise confidence band around

∆(Ĝ,b), because its asymptotic distribution is normal distributed. Hence, due to the cen-
tral limit theorem (Brown, 2011) with variance estimated by the sample variance of the

likelihood ratio contributions fi(yi|bi)
fi(yi|G)

, pointwise confidence limits for ∆(Ĝ,b) can easily
be obtained.

At last, to conclude the discussion on the gradient function framework for mixed and
combined models, attention is given on an additional powerful aspect of the gradient
function. Even when the gradient function obvious exceeds 1, Verbeke and Molenberghs
(2013) mentioned that the shape of the gradient function gives some indication of how the
distribution G can be adapted to provide a better fit. An increase in log-likelihood can be
achieved by replacing the mixing distribution G by H, chosen such that Φ(G,H) > 0. It
directly follows from derivation (E.1) that H should have considerable support in areas
where the gradient function is large (i.e. larger than 1) and little support in areas where
the gradient function is small (i.e. smaller than 1). Hence, a model with a gradient
function exceeding 1 can be improved by moving probability mass from areas where the
gradient function is small to areas where the gradient function is large.

In the next section, the formal testing procedure of Efendi, Drikvandi, Verbeke and Molen-
berghs (2014) will be discussed. This test is based on the gradient function, i.e., formula
(8.3), and can be seen a simple applicable diagnostic test for the random-effects distribu-
tion in mixed and combined models, e.g., the WGN model.

8.3 The Testing Procedure

While Verbeke and Molenberghs (2013) proposed a simple, powerful graphical tool to
check the impact of assumptions about the random-effects distribution in mixed and
combined models on inferences, Efendi, Drikvandi, Verbeke and Molenberghs (2014) used
this approach to develop a simple diagnostic test for the random-effects distribution in
mixed models, where inference is conducted through the bootstrap. This section will be
devoted to this approach.

Let {bk, k = 1, . . . , K} be a sufficiently fine grid in region I. Efendi, Drikvandi, Verbeke
and Molenberghs (2014) defined the test-statistic by

T =
1

K
·
K∑
k=1

∣∣∣∣∆̂(Ĝ, bk)− 1

∣∣∣∣, (8.5)

where ∆̂ explicitly acknowledges the fact that the unknown parameters θ in fi(yi | bi)

have been replaced by their estimators θ̂. From formula (8.5), it can easily be concluded

that test-statistic T quantifies the deviation of gradient function ∆(Ĝ,b) from 1, within
the interval I. The null-distribution of T , which is needed to formally test whether
the assumed mixing distribution G is appropriate, can be obtained using parametric
bootstrap. The following steps are then required in order to perform the bootstrap test:

63



1. Based on the observed data, fit the mixed model under consideration, with a par-
ticular assumption for the mixing distribution G, i.e. maximize `(G) with respect
to the vector ω′ = (θ′,%′) of unknown parameters which completely characterizes
the marginal density fi(yi | G).

2. Construct the gradient function and compute the resulting observed value Ta for
the test-statistic T .

3. For s = 1, . . . , S, repeat the following steps:

(a) Sample a new vector ωs of parameter values from a multivariate normal dis-
tribution with mean ω̂ and covariance matrix equal to the inverse Fisher in-
formation matrix for the fitted model.

(b) Sample random effects bsi , i = 1, . . . , N , from G in which ω has been replaced
by ωs.

(c) Sample new observations Ys
i , i = 1, . . . , N , from fi(yi | G) in which θ has been

replaced by θs. Note that the data set should have the same structure as the
original data set (covariates, number of measurements, etc.)

(d) Fit the mixed model under consideration based on the sampled data Ys
i , i =

1, . . . , N .

(e) Construct the gradient function and compute the resulting observed value T s

for the test-statistic T .

4. Calculate the p value as the proportion of values T s exceeding Ta.

Since the construction of interval I depends on the observations in the bootstrap pro-
cedure, the interval I changes with each bootstrap sample. Particularly, the interval is
determined from knowing the minimum and maximum of the unique modes of all fi(yi | b)
as functions of b. The unique modes are calculated through maximizing each fi(yi | b)
(model fitting by subject/cluster) with parameter estimates from maximizing f(y | b)
set as offsets except the one related to b. Moreover, Efendi, Drikvandi, Verbeke and
Molenberghs (2014) evaluated the operating characteristics of the test in a simulation
study.
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Chapter 9

Local Influence Diagnostics for the
Combined Model

Commonly, after formulating and fitting a model in statistics, an assessment of model
fit and a diagnostic analysis is advisable. Whereas a goodness-of-fit test for the random-
effects distribution in mixed and combined models has been discussed in Chapter 8, this
chapter focuses on the detection of influential subjects, i.e., a methodology of sensitivity
analysis for assessing the influence of small perturbations in a general statistical model.
In particularly, attention is given on the location of influential subjects WGN model
(Chapter 4).

In the past, several approaches have been discussed for detecting influential observations
for (generalized) linear models. For example, for linear regression models, an important
approach for identifying influential observations based on case deletion was proposed by
Cook (1977a, 1977b & 1979), by defining the so-called Cook’s distance. This quantity
measures the effect of removing one observation on a parameter estimate or a fitted value.
If an observation produces a significant difference in the analysis, the observation is pro-
nounced as an influential point in the data. Nowadays, the Cook’s distance measurement
has become a popular tool to detect influential observations in linear models by its in-
clusion in popular statistical software tools such as SAS and R. In the context of missing
data, Zhu and Lee (2001) developed a methodology to assess local influence in a minor
perturbation of a statistical model with incomplete data, by utilizing Cook’s approach
to the conditional expectation of the complete-data log-likelihood function in the EM
algorithm. It has the potential to assess a variety of complicated models that cannot be
handled by existing methods. For elliptical linear models, e.g., the normal, Student t-,
Cauchy and logistic distributions, local influence analysis in the univariate case has been
made by Galea et al. (1997) and Liu (2000). Liu (2001) introduced a general framework
with the concepts of the observed information matrix and the so-called Delta matrix so
that the local influence method becomes applicable to elliptical linear regression models
in the multivariate case. Delta matrices under the perturbed models of perturbations in
case-weights, explanatory variables and response variables are derived, respectively. A
general discussion on elliptical models can be found in Frahm (2004) and Lemonte and
Patriota (2011).

Extending local influence approaches to mixed and combined models is far from straight-
forward. For example, linear mixed models, unlike linear models, generally do not allow
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for closed-form parameter estimators. Along with other reasons, Lesaffre and Verbeke
(1998) therefore proposed a case-weight perturbation scheme for LMM. This scheme in-
vestigates how much the parameter estimates are affected by changes in the weights of
the log-likelihood contributions of special observations. Several useful characteristics are
present in their approach, and its worthwhile to express them. First, influence in fixed-
effects parameters are distinguished from that in variance components. Second, for each
of these parameter subsets, influence is decomposed in interpretable components. Third,
once the model is fitted, the influence diagnostics are computationally inexpensive. For
GLMM, less attention has been given on the local influence detection of observations. One
of the main complications is that the (log-)likelihood function does not admit a closed
form. Hence, their derivations were numerical in nature, which makes it less evident to
derive meaningful influence components.

Rakhmawati, Molenberghs, Verbeke and Faes (2014) extended local influence for the
GLMM in several ways, by constructing a framework that allows overdispersion in GLMM,
i.e., the combined model, and is applicable to binary, count, and time-to-event outcomes.
Moreover, three approaches have been suggested, i.e., (1) purely numerical derivations,
(2) using a closed-form expression of the marginal likelihood function and (3) using an
integral representation of this likelihood. In particularly, this thesis places emphasis on
local influence paradigm of the Weibull-normal (WN) model, i.e., the defined Weibull-
based GLMM of Section (4.1). Applying and discussing the framework to the WGN
model can be done as well.

The chapter is organized as follows. Section 9.1 reviews the essence of local-influence
theory. The LMM case of Lesaffre and Verbeke (1998) is described in Section 9.2.1, with
the additional proof of Rakhmawati, Molenberghs, Verbeke and Faes (2014) that the
integral form of the log-likelihood leads to exactly the same expressions. At last, the local
influence paradigm of Rakhmawati, Molenberghs, Verbeke and Faes (2014) is conducted
to the WN model (Section 9.2.2).

9.1 General Theory of Local Influence

9.1.1 Standard Approach

Local influence has become an important step in the analysis of a dataset. While Cook
(1986) popularized this paradigm in statistics, lot of research has been devoted ever since.
The origin of local influence discussion lies in Cook’s (1977) paper, and will serve as
starting point.

Cook’s (1977) paper emphasizes case-deletion diagnostics, i.e., a popular way to assess the
individual impact of cases on the estimation process, for all kind of models. While these
diagnostics can be placed in a global influence analysis, where the effect of an observation
is assessed by completely removing it, local influence analysis have been discussed later on
(Cook, 1986). This approach gives a weight ωi to each observation and measures the effect
on the parameter estimation by perturbing these weights around, say, ωi = 1. Lesaffre
and Verbeke (1998) pointed out that the choose of weight equally to 0 or 1 corresponds to
the global case-deletion approach. Using Cook’s (1986) paper as reference, Lesaffre and
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Verbeke (1998) introduced influence assessment for the linear mixed model. Even while
technical requirements are needed for local influence, it leads to easy and fast calculations
and even to interpretable components of influence (in many cases). A review of several
diagnostic procedures for the linear mixed model is given in Mun and Lindstrom (2013).

Rakhmawati, Molenberghs, Verbeke and Faes (2014) mainly focused on the paper of
Ouwens, Tan, and Berger (2001), where local influence was explored in the Poisson-
normal model. Rakhmawati et al (2014) extended their framework in three ways (see
above), and developed it for the combined model framework in three particular cases:
binary, count, and time-to-event data.

Using the same terminology as before (Section 8.1), let `(θ) denote the log-likelihood for
the generalized linear mixed or combined model, and is represented by

`(θ) =
N∑
i=1

`i(θ), (9.1)

where `i(θ) represents the contribution of the ith observation to the log-likelihood function
with vector of unknown parameters θ. Cook (1986) extended this terminology by defining
`(θ | ω) as the perturbed version of `(θ), depending on an N -dimensional weight vector
ω that belongs to an open subset Ω of RN . Mathematically,

`(θ | ω) =
N∑
i=1

ωi · `i(θ). (9.2)

By comparing formula (9.2) and (9.1), there exists a weight vector ω0 such that `(θ |
ω) = `(θ) for all θ, i.e., ω0 = (1, 1, . . . , 1)

′
. Furthermore, let θ̂ω and θ̂ be the maximum

likelihood estimators for θω and θ, respectively. To assess the influence of varying ω
throughout Ω, Cook (1986) suggested to measure the distance between θ̂ω and θ̂ by the
so-called likelihood displacement, i.e.,

LD(ω) = 2 ·
(
`(θ̂)− `(θ̂ω)

)
. (9.3)

Here, a few comments are in place. First, Rakhmawati, Molenberghs, Verbeke and Faes
(2014) pointed out that LD(ω) will be large if `(θ) is strongly curved at θ. Secondly,
Cook (1986) mentioned that information on the influence of case-weight perturbations
are brought out by a graph of LD(ω) versus ω, i.e., the geometric surface formed by the
values of the (N + 1) x 1 dimensional matrix

χ(ω) =

(
ω

LD(ω)

)
(9.4)

as ω varies throughout the open subset Ω of RN . In mathematics, more specifically
differential geometry, surfaces of this kind are often called Monge patch’s (Millman and
Parker, 1977), and have been widely used as basic entity in many practical (data science)
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applications, e.g., for facial feature tracking with 3D TOF cameras (Haker et al, 2007).
For conventional reasons (Cook, 1986), χ(ω) is referenced as an influence graph.

To characterize the behavior of an influence graph around ω0, Cook (1986) used geometric
normal curvatures that were developed by the use of vector χ(ω) of formula (9.4). While
Cook (1986) also discussed other types of influence graphs, this section only focuses on
the first approach, i.e., for χ(ω) of formula (9.4).

By using the properties that (1) LD(ω) achieves a local minimum at ω0, (2) ∂LD(ω)/∂ωi =
0 holds for all i, i = 1, . . . , N ,

(3)
∂`(θ | ω)

∂θj

∣∣∣∣
θ̂=θ̂ω

= 0, (9.5)

for j = 1, . . . , p and all possible vectors ω in Ω, (4) applying the chain rule for differentia-
tion twice and (5) differentiating both sides of (9.5) w.r.t. ω and evaluating at ω0, Cook
(1986) derived that the normal curvature Cl of the lifted line ω(x) = ω0 +x · l in direction
l equals to

Cl = 2 ·
∣∣∣∣l′ ·∆′ · L̈−1 ·∆ · l

∣∣∣∣, (9.6)

where ∆ be the p x N matrix with ∆i, i.e., the p-dimensional vector of second-order
derivates of `(θ | ω) w.r.t. ωi and all components of θ, evaluated at θ = θ̂ and ω = ω0,
in the ith column, L̈ represent the p x p matrix of second derivatives of `(θ), evaluated

at θ = θ̂, l denotes a fixed nonzero vector of unit length in RN and x ∈ R.

From formula (9.6), different choices for l can be made. For example, Rakhmawati,
Molenberghs, Verbeke and Faes (2014) mainly focused on subject i only, by choosing
l = li, i.e., a zero N -dimensional vector with a sole 1 on the ith position, and when only
a sub-vector θ1 of the parameter vector θ = (θ

′

1,θ
′

2)
′

is of interest. The normal curvature
for the former one can simply be expressed by

Ci ≡ Cli = 2 ·
∣∣∣∣∆′

i · L̈−1 ·∆i

∣∣∣∣. (9.7)

For the latter one (Verbeke and Molenberghs, 2000), the normal curvature is formulated
by

Cl(θ1) = Cl + 2 · l′ ·∆′ ·
(

0 0

0 L̈−1
22

)
·∆ · l ≤ Cl. (9.8)

When L̈−1
12 = 0 hold, Rakhmawati, Molenberghs, Verbeke and Faes (2014) pointed out

that an influence decomposition is possible:

Cl = Cl(θ1) + Cl(θ2). (9.9)

Furthermore, formula (9.9) approximately holds for weakly correlated sub-vectors.
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9.1.2 Proceeding when faced with a Complicated Likelihood

In Section 9.2.1, attention is given to the local influence framework of Lesaffre and Verbeke
(1998). These authors derived local influence based on the explicit expression of the
marginalized linear mixed model (see Section 3.3.1). Due to the occurrence of marginal
closed expressions for Poisson-Normal, Poisson-Gamma-Normal, Probit-Normal and WN
models, Rakhmawati, Molenberghs, Verbeke and Faes (2014) extended their approach in
two alternative ways: (1) Using integral expression (3.31), combined with the property
that integration and derivation can be interchanged under mild regularity conditions, and
(2) choosing a fully numerical route, as in Ouwens, Tan, and Berger (2001). In Section
9.2.2, both routes are explored for the WN model.

9.2 Local Influence for Generalized Linear mixed Mod-

els

9.2.1 Local Influence for the Linear Mixed Model

To discuss the local influence paradigm of Rakhmawati, Molenberghs, Verbeke and Faes
(2014), the local influence framework of Lesaffre and Verbeke (1998) will be used as
starting point. Using the same terminology as before (Section 3.3.1) and to stay in
line with these authors, the marginal linear mixed model (3.24) will be studied, with
conditional independence assumption Σi = σ2 · Ini , and Ini the ni x ni identity matrix.

To derive a local influence framework for linear mixed models, Lesaffre and Verbeke (1998)
first reformulated expression (9.7) of the normal curvature Ci by

Ci = −2 ·
(
θ̂ − θ̂

1

(i)

)′
· L̈(i) · L̈−1 · L̈(i) ·

(
θ̂ − θ̂

1

(i)

)
. (9.10)

A full explanation of the components can be found in Appendix (F.1.1). It is advantageous
that Ci admits a closed form (9.7). Assuming Ri, Xi, and Zi to be the ”standardized”

residuals and covariates for the ith individual, defined by Ri = V
−1/2
i ·ri, Xi = V

−1/2
i ·Xi,

and Zi = V
−1/2
i · Zi, respectively, with ri = yi − Xi · β̂ and Vi = Zi · D · Z

′
i + σ2 · Ini .

Furthermore, let ‖A‖ =
√

tr(A′ · A) be the Frobenius norm of a matrix A (Golub and
Van Loan, 1989). With these elements defined, Lesaffre and Verbeke (1998) decomposed
Ci into the following five interpretable components:

‖Xi · X
′

i ‖, ‖Ri‖, ‖Zi · Z
′

i‖, ‖I −Ri ·R
′

i‖, ‖V −1
i ‖. (9.11)

A few comments are in place. First, ‖Xi · X
′
i ‖ measures the length of the standardized

covariates in the mean structure and ‖Ri‖ represents an overall measure for how well the

observed data for the ith subject are predicted by the mean structure Xi · β̂. Second, a
similar meaning is present for the components ‖Zi · Z

′
i‖ and ‖I −Ri ·R

′

i‖, respectively,
but now for the covariance structure. For example, ‖I−Ri ·R

′

i‖ equals to zero only if Vi
equals ri · r

′
i, i.e., an estimate for Var(yi), which only assumes the mean to be correctly

modeled as Xi · β. Therefore, ‖I −Ri ·R
′

i‖ can be understood as a residual, capturing
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how well the covariance structure of the data is modeled by Vi. Third, ‖V −1
i ‖ becomes

large if Vi has small eigenvalues, which indicates that the ith subject is assumed to have
small variability.

Due to their decomposition of Ci, a practical procedure to find an explanation for the in-
fluential nature of an individual immediately follows, i.e., when Ci is large, the diagnostics
are explored. Such plots are useful to graphically inspect the individuals in view of their
influential nature. Lesaffre and Verbeke (1998) therefore suggested to start with an index
plot of Ci. Particularly, the index plots of the components (9.11) can be investigated.
However, a recurrent difficulty with diagnostics is to establish a threshold above which
an individual is defined as remarkable. It follows from (9.7) that

N∑
i=1

Ci = −2 · tr

(
L̈−1 ·

N∑
i=1

∆i ·∆
′

i

)
→ 2 · s, (9.12)

for N approaching to∞. As for leverage in linear regression, Lesaffre and Verbeke (1998)
denoted that one could classify an individual for which Ci is larger than twice the average
value (larger than 4 · s/N , for N large) as being influential. Unlike the leverage situation,
however, 2 · s is only the approximate sum of the Ci. Therefore, non accurate conclusions
will be obtained if (1) the model is not correctly specified (such that L̈−1 ·

∑N
i=1 ∆i · ∆

′
i

does not converge to Is) or (2) if N is too small for the asymptotic results to yield good
approximations. To resolve this issue, Lesaffre and Verbeke (1998) proposed to replace
2 · s by the actual sum, and called the ith subject influential if Ci is larger than the cutoff
value 2 ·

∑N
i=1Ci/N .

Given decomposition (9.11), Lesaffre and Verbeke (1998) additionally considered sub-
vectors β and α of fixed effects and variance components, respectively, with correspond-
ing influences Ci(β) and Ci(α), respectively. Given that the fixed effects and variance
components are asymptotically independent, it follows that

Ci ≈ Ci(β) + Ci(α). (9.13)

Lesaffre and Verbeke (1998) showed in this setting that Ci(β) can be decomposed using
only the first two components of (9.11), i.e., ‖Xi · X

′
i ‖ and ‖Ri‖, while the last three

components of (9.11), i.e., ‖Zi ·Z
′
i‖, ‖I−Ri ·R

′

i‖ and ‖V −1
i ‖, feature in the decomposition

of Ci(α). Asymptotically therefore, influence for the fixed effects can be studied by the
first two components of (9.11), while the last three components of (9.11) are only needed
for the influence of the variance components.

Until now, the standard approach of Lesaffre and Verbeke (1998), based on the marginal
likelihood of the LMM, was discussed. Rakhmawati, Molenberghs, Verbeke and Faes
(2014) proposed an alternative way, i.e., the so-called integral-based approach, to allevi-
ate complexities with the explicit marginal likelihood expressions. While these authors
mainly focused on developments of the Poisson, probit, logit, and Weibull cases, the LMM
framework was first used as starting point. Derivations of the integral-based approach
for the LMM setting can be found in Appendix (F.1.2). As outcome, the same result is
obtained. The same interpretable components as in (9.11) ensue.
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9.2.2 Local Influence for the Weibull-Normal Model

In this section, local influence for the WN model is studied, according to the developed
framework of Rakhmawati, Molenberghs, Verbeke and Faes (2014). Both routes, i.e., (1)
integral-based and (2) fully numerical approach, will be discussed in detail. An extended
overview of the local influence paradigm and corresponding calculations in other general-
ized linear mixed models, e.g., the Poisson-normal, probit-normal and logit-normal model,
can be found in the paper of Rakhmawati, Molenberghs, Verbeke and Faes (2014).

Equivalent to the described WGN model (4.1)–(4.3), the WN model can be formulated
by

f(yi | bi) =

ni∏
j=1

λ · ρ · yρ−1
ij · ex

′
ij ·ξ+z

′
ij ·bi · e−λ·y

ρ
ij ·e

x
′
ij ·ξ+z

′
ij ·bi

, (9.14)

f(bi) =
1

(2 · π)q/2· | D |1/2
· e−

1
2
·b′i·D−1·bi . (9.15)

1. Integral-based approach

Keeping in mind that the joint distribution of the WN model equals (B.5), where
θij simplifies to 1, and following the same integral-approach of the LMM (Appendix
F.1.2), Rakhmawati, Molenberghs, Verbeke and Faes (2014) derived the partial
derivatives w.r.t. the fixed effects ξ and variance-covariance matrix D as

∂li(ξ, D)

∂ξ
=

ni∑
j=1

xij − λ ·
ni∑
j=1

yρij · xij · exp(µij), (9.16)

∂li(β, D)

∂djk
= −1

2
· (2− δjk) ·

[
(D−1)jk − (D−1 ·D−1)jk · Var(bi)

]
, (9.17)

where djk is the (j, k) element of D, µij = x
′
ij · ξ+ z

′
ij · bi, Var(bi) =

∑q
k=1 Var(bik)

and δjk = 1 if j = k and 0 otherwise.

From (9.16)–(9.17), interpretable expression can be derived. Using the same ter-
minology as before (Section 9.1.1), Rakhmawati, Molenberghs, Verbeke and Faes
(2014) showed that the sum of squares of the contributions for the ith individual,
i.e., ‖∆i‖, equals

‖∆i‖ =

(∑
j=1

nixij

)
·

(∑
j=1

nixij

)′
− 2 ·

∑
j=1

nixij ·Q
′

i + Qi ·Q
′

i

+
∑
k,l

[
−1

2
· (D−1)kl +

1

2
· (D−1 ·D−1)kl · Var(bi)

]2

, (9.18)

where Qi = λ ·
∑

j=1 niy
ρ
ij · xij · exp(µij). They rewrote Ci by the sum of C1i and

C2i, with
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C1i = 2 · ‖L̈−1‖ ·
(
‖xi‖2 − 2 · xi ·Qi + ‖Qi‖2

)
· cos(ϕi),

C2i =
1

2
· ‖L̈−1‖ · cos(ϕi) · tr

[
(D−1)2

kl

]
− tr

[
2 · (D−1)kl · (D−1 ·D−1)kl · Var(bi)

]
+ tr

[
(D−1 ·D−1)2

kl · Var(bi)
2
]
. (9.19)

where xi =
∑

j=1 nixij. Note that C1i and C2i are the contributions of the ith
subject to local influence contributions Ci from ξ and D, respectively.

Hence, the interpretable components of Ci for the Weibull normal model can be
described using the length of fixed effect (‖xi‖2) and the squared of random effect
variability (Var(bi)

2). Similar results were obtained for the Poisson-normal and
logit-normal model (Rakhmawati, Molenberghs, Verbeke and Faes, 2014).

2. Fully numerical route

Alternatively, a fully numerically route can be taken. This approach is based on
replacing derivatives by appropriately precise finite differences of the first and sec-
ond order, for the score vector and Hessian matrix, respectively. Since formula (9.7)
mainly consists of first- and second-order derivatives of the loglikelihood function,
a fully numerically route can be followed for the discussed local influence paradigm.
Additionally, easy implementation is present for models with perturbation scheme
(9.2) for the log-likelihood, provided that the score and Hessian functions are numer-
ically available. In many statistical software packages, e.g., SAS, such calculations
are routinely done in the log-likelihood maximization process. For the score, indi-
vidual subjects’ contributions are needed (see formula (9.7)).

To conclude the discussion on local influence, Rakhmawati, Molenberghs, Verbeke and
Faes (2014) pointed out that the use of both routes, i.e., (1) integral-based and (2) fully
numerically, are beneficial, due to the computational ease of the latter approach and the
explicit calculated fields to understand the influence components more in detail in the
first one.
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Chapter 10

Enriched-data Problems and
Essential Non-identifiability

In statistics, two principal ways are present in which statistical models extend beyond
the data available. First, the data may be coarsened, i.e., what is actually observed
is less detailed than what is planned. Typical causes of coarsening can be attrition,
censoring, grouping, or a combination of these. Second, the data may be augmented,
i.e., the observed data are hypothetically but conveniently supplemented with structures.
These structures can be random effects, latent variables, latent classes, or component
membership in mixture distributions. Combining both aspects together is referred as
enriched data, and needed to be handled with caution.

Main reasons for modeling enriched data include the incorporation of substantive infor-
mation, e.g., the need for predictions, advantages in interpretation, and mathematical
and computational convenience, where the fitting combines evidence arising from empir-
ical data with non-verifiable model components, i.e., that are purely assumption driven.
Therefore, discretion of the potential dangers and pitfalls that follow from this should be
present in the analysis. In the past, attention has been given on the missing data and
random effects models case (Verbeke and Molenberghs, 2010). Molenberghs, Njeru Njagi,
Kenward, and Verbeke (2012) extended this discussion in a much broader framework,
encompassing a bigger number of seemingly disparate enriched-data settings.

This chapter focuses on both papers. In Section 10.2, the general results, concerning
enriched data structures, are discussed. These results are mainly based on Verbeke and
Molenberghs (2010). In particular, attention is given to the fact that the components of
the models can be chosen in an effectively infinite number of ways without affecting the fit
to the observed data. Moreover, these general results are then applied in two widely used,
recognized statistical settings, i.e., random effects models (Section 10.3) and incomplete
data (Chapter 7). An extended version of applications can be explored in Molenberghs,
Njagi, Kenward, and Verbeke (2012).

10.1 Introduction

Statistical models often rely on assumptions that cannot be examined from the data
under analysis. Therefore, it is important that the use of these models properly reflects
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the implied reliance on external information. Molenberghs, Njagi, Kenward, and Verbeke
(2012) provided a good, clear example of the failure to appreciate the nature of such
models by the well-known historical developments surrounding factor analysis in so-called
general intelligence measurement (Gould, 1981). Even while this thesis does not focuses
on factor analysis, the example will be adopted in order to better understand the increased
discussion on enriched data.

Factor analysis has a long history in psychology, dating back to the work of Charles Spear-
man and Karl Pearson in the early 1900’s. At that time, psychologists speculated that
intelligence could be defined by a single, all-in-one unobservable entity g. In Spearman’s
(1904) paper, Spearman sought to describe the influence of g on examinees test scores on
several domains, e.g., mathematics, language, etc. Motivated by the positive correlations
among these tests, Spearman used the technique to develop the so-called ”two-factor” the-
ory, implying that a set of mental tests represents an underlying general factor (g here),
in addition to each test’s specific information. Moreover, Spearman named the entity g
general intelligence, and declared it further as an attribute, resident in the brain, which he
called general energy, alongside with the test-specific information, called s-factors, which
were identified as specific engines in the brain, which are under the influence of the general
energy.

Nowadays, two major schools of thought are present on the nature of intelligence. For
the first one, supported by such psychologists as Eysenck, Galton, Jensen, and Spearman,
major believe is present that all intelligence comes from one general factor g. The pro-
ponents of the other school of thought, presented by Gardner, Sternberg, and Thurstone,
pronounced that all intelligence cannot be displayed by one single factor, but by more than
one general type of intelligence. For example, Thurstone faulted Spearmans methodology
of one single factor g by proposing a solution that is a rotation of Spearmans principal-
components solution. While the observed data is fitted equally well with the solution of
Spearman, difference only arise in aspects of the model that cannot be verified from the
data. The value of their respective solutions including their non-verifiable assumptions
rests entirely on practical considerations. Molenberghs, Njagi, Kenward, and Verbeke
(2012) used this example to show that this phenomenon is very common throughout sta-
tistical modeling, and extends across a whole range of common data-analytic approaches.
Nevertheless, they used it to indicate the importance of sensitivity in statistical modeling.

Molenberghs, Njagi, Kenward, and Verbeke (2012) distinguish two types of settings. The
first one, termed augmented data, applies when the observed data is supplemented with
latent or unobserved quantities. Examples include random-effects models, latent class and
latent variable models, and finite-mixture models. The second one, referred to as coars-
ening, was first introduced by Heitjan (Heitjan and Rubin, 1991; Zhang and Heitjan,
2007), and refers to situations where the observed data are coarser than the hypotheti-
cally conceived data structures, to which the models of interest apply. Examples include
incomplete data and censored survival data. Molenberghs, Njagi, Kenward, and Verbeke
(2012) pointed out that there is a formal distinction between the two types. In the coarse-
data setting, a part of the data would ideally be observed but is not in practice, e.g., actual
survival time after censoring and outcomes after dropout. Augmented data, on the other
hand, refers rather to the addition of useful but artificial constructs to the data setting,
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e.g., random effects, latent classes, latent variables, factors, and mixture component mem-
bership, and can never be observed. They focus on the review of a selected range of each
setting, and bring out commonality. Combining both settings together refers to enriched
data, and will be treated in a unified way, such that important, common features can be
illuminated and scrutinized.

In the parts that follow, two relevant settings will be explored in detail in this thesis,
i.e., random effects models and incomplete data. Since a discussion on incomplete data
has already been provided in Chapter 7, the random effects models will be briefly dis-
cussed here (Section 10.3). Both are discussed in this thesis since a part of the model is
totally unidentifiable from the observed data, implying that the identification of such a
part can come from assumptions only. Nevertheless, random-effects and missing data are
two aspects that form an important part of this thesis. More specifically, and similar to
Molenberghs, Njagi, Kenward, and Verbeke (2012), this chapter can be split into the part.
First, a setting is provided to show how models in enriched-data environments are identi-
fied by a triple framework, i.e., data, design-based assumptions (e.g., randomization), and
further unverifiable assumptions. Focus is laid on the model itself and its relationship to
the data through likelihood, and not specifically with subsequent inferences and whether
a Bayesian or frequentist route is taken. In the Bayesian approach, a part of the model is
considered for which the posterior density depends only on the choice of prior density (as-
suming appropriate independence relationships among components of the prior density),
and in the frequentist paradigm that does not affect goodness-of-fit to the observed data.
Second, while various forms of this are known in various sub-fields, to variable degrees,
emphasis is placed on the great similarity between these fields and settings; appropriate
review of a number of selected areas is presented to facilitate study of the common fea-
tures. This is presented by showing how non-identified parts can be replaced arbitrarily,
without altering the fit to the observed data but with potentially non-trivial consequences
for inferences and substantive conclusions. It should be clear that this can be dangerous
and the user must carefully reflect on the arbitrary components. Molenberghs, Njagi,
Kenward, and Verbeke (2012) mentioned that they should be supported by substantive
considerations or be made part of a sensitivity analysis, similar to the conclusion of Chap-
ter 7. Therefore, acceptable goodness-of-fit to the observed data cannot be used as the
sole justification for the analysis. In the absence of external corroborating knowledge
or information, two alternative routes can be followed. First, it can be made clear that
the conclusions drawn have meaning only under the external assumptions built into the
analysis. For example, a researcher can choose to draw inferences given a set of scien-
tifically plausible but otherwise non-verifiable causal relationships. It is then important
not to divorce the data analysis from the assumptions made. Second, an appropriate
sensitivity analysis can be conducted to augment the conclusions. By sensitivity analysis,
either a study of how unverifiable assumptions affect overall inferences, or an assessment
of traceability (Molenaar, 2004, 2008), i.e., how unverifiable assumptions influence pre-
dictions for individual subjects. For example, analyses can be conducted under a number
of alternative sets of hypothesized structures as well. This then allows the researcher to
examine the sensitivity of the inferences concerning the scientific question to varying the
underlying assumptions.
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10.2 General Result about Counterparts in Enriched-

data Structures

This section mainly focuses on the developments of Verbeke and Molenberghs (2010),
and will be used as basic building block in the process development of the discussion
on counterparts in enriched-data structures. Let Zi be the data for an independent unit
i, i = 1, . . . , N , that is augmented with ci, i.e., any type of enriched-data form. Often
encountered examples for vector ci are missing data, random effects, or even a combination
of both. Here, the column dimension of Zi and ci (not denoted here) is suppressed from
notation for simplicity.

Assume a joint model of the generic form f(zi, ci | θ,ψ), where covariates are suppressed
for notational simplicity. Moreover, the parameters are considered to be disjoint, meaning
that the parameter space of θ and ψ equals the set theoretic product of the individual
parameter spaces (Rubin, 1976). Now, consider the following factorizations:

f(zi, ci | θ,ψ) = f(zi | ci,θ) · f(ci | ψ), (10.1)

= f(zi | θ,ψ) · f(ci | zi,θ,ψ). (10.2)

By using the same terminology as before (Chapter 3, 4 & 5), names can be given to every
factor of (10.1) and (10.2). The left part of equation (10.1) and (10.2) equals to the joint
model. For the right hand side of (10.1), a split is made. The first part, i.e., f(zi | ci,θ),
can be labeled as the hierarchical model, while the second part, i.e., f(ci | ψ), refers to
the prior density for the enriched data. An analogue categorization can be given to the
right hand side of (10.2). The first factor in (10.2), i.e., f(zi | θ,ψ), may be termed
the marginal model, whereas the second one, i.e., f(ci | zi,θ,ψ), refers to the posterior
density of the enriched data.

From (10.1)−(10.2) and the mixed-model setting (Section 8.1), an obvious link is present.
The link with incomplete data follows by setting ci ≡ ymi and zi = (y0

i , ri). These
considerations immediately establish the following theorem:

Theorem 10.2.1 (A Family of Counterparts to a Given Model for Enriched Data). Let
data zi be enriched with ci. Then, any model (10.1) formulated for and fitted to such data,
can be replaced by an infinite family of models, all retaining the fit to the observed data as
achieved by the original model. This is done by preserving the marginal model f(zi | θ̂, ψ̂)
and replacing the posterior density f(ci | zi,θ,ψ) by an arbitrary conditional density

f(di | zi,γ). (10.3)

Some comments are in place here. First, the vector di indicates that there not need
to be any connection between the original and substituted enriched data, contrary to
ci. Additionally, the (new) density (10.3) can be parameterized by a completely new
parameter γ.
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10.3 Random Effects Models

To stay in line with this thesis’ topic, a discussion around random effects models is made.
More particularly, and similar to Molenberghs, Njagi, Kenward, and Verbeke (2012) and
Verbeke and Molenberghs (2010), the standard linear mixed model of Section 3.3.1 will be
considered (Section 10.3.1). Verbeke and Molenberghs (2010) extended their discussion
on random effects in LMM by exploring a special but enlightening case of exchangeable,
compound symmetry data, in the sense that all members of a cluster have the same
mean µi and the variance-covariance matrix is of a compound-symmetry structure, i.e.,
Vi = σ2 · Ini + d · Jni , where Ini is an ni-dimensional identity matrix and Jni is an ni
x ni matrix consisting of 1’s. This setting is referred as the ’exchangeable’ one (Section
10.3.2), equivalent to Verbeke and Molenberghs (2010).

10.3.1 The Standard Linear Mixed Models

In order to apply Theorem 10.2.1 to the LMM setting (Section 3.3.1), formulation (3.22)
- (3.24) will be used to first express all components featuring in (10.1) - (10.2), i.e.,
hierarchical model, prior density, marginal model and posterior density, for the LMM
framework. Secondly, the posterior density for the random effects, which is often chosen
normal, is replaced by two versions of the exponential density.

1. Components featuring in (10.1) - (10.2)

Using formulation (3.22) - (3.24) of the LMM, the fully hierarchically specified linear
mixed effects model is formulated by (Verbeke and Molenberghs, 2000)

Yi | bi ∼ N(Xi · ξ + Zi · bi,Σi), (10.4)

bi ∼ N (0, D) , (10.5)

where the same terminology is used as before (Section 3.3.1). Here, formula (10.4)
refers to the defined hierarchical model of Section 10.2, while expression (10.5)
denotes the prior density of the random effects.

Based on formulation (10.4) - (10.5), the following marginal model, i.e., formula
(3.24), and posterior distribution of the random effects follow (Verbeke and Molen-
berghs, 2000; Searle et al, 1996):

Yi ∼ N(Xi · ξ,Vi = Zi ·D · Z
′

i + Σi), (10.6)

bi | Yi ∼ N
[
D · Z′i ·V−1

i · (Yi −Xi · ξ), (Z
′

i · Σ−1
i · Zi +D−1)−1

]
(10.7)

Due to the definition of EB prediction for the normal random effects, i.e., formula
(4.17), and expression (10.7), the EB estimation easily follows:

b̂i = E(bi | Yi) = D · Z′i ·V−1
i · (Yi −Xi · ξ). (10.8)
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For the prediction of Yi, the outcome in (10.8) is plugged into the mean of the
hierarchical model (10.4):

Ŷi = (Zi ·D · Z
′

i) ·V−1
i · yi + (Σi) ·V−1

i ·Xi · ξ, (10.9)

the familiar ’weighted average’ of the observed outcomes yi and the marginal mean
Xi · ξ.

2. A first normal exponential version of LMM

To show the arbitrariness of the posterior density, mentioned in Theorem 10.2.1,
the normally distributed random effects is replaced by a vector of ni independent
gamma random effects, where each outcome component Yij is paired with a gamma
random effect gij. The conventional density for a gamma variable φ is

f(φ) = [βα · Γ(α)]−1 · φα−1 · e−φ/β, (10.10)

with parameters α, β ≥ 0. Equivalent to Verbeke and Molenberghs (2010), let α = 1
and δ = 1/β in (10.10). Expression (10.10) is then expressed by

f(φ) = δ · e−φ·δ, (10.11)

i.e., the exponential density. Verbeke and Molenberghs (2010) motivated this choice
to conveniently illustrate Theorem 10.2.1, in such a way that reasonably tractable
closed-form expressions are provided, at the same time allowing for choice within the
exponential framework. Here, a conditional density of the form (10.11) for φ = gij
is chosen, with δ = γj · yij and γj is an unspecified parameter.

The marginal model (10.6) is retained, and coupled with the posterior density

f(gi | yi) =

ni∏
j=1

γj · yij · e−gij ·γj ·yij . (10.12)

From expression (10.2), it immediately follows that the joint density of yi and gi
equals to the product of the marginal density (10.6) and posterior density (10.12).
By deriving some algebra (not presented in this thesis), the hierarchical and prior
density follows as

f(yi | gi) =

(∏ni
j=1 yij

)
· eθ

′
i·(yi−Xi·ξ) · e 1

2
·[(yi−Xi·ξ)

′ ·V−1
i ·(yi−Xi·ξ)+θ

′
i·Vi·θi]

(2 · π)ni/2· | D |1/2 ·Mni(Xi · ξ + Vi · θi,Vi)
, (10.13)

f(gi) =

(
ni∏
j=1

γj

)
· e(Xi·ξ)

′ ·θi+ 1
2
·θ
′
i·Vi·θi ·Mni(Xi · ξ + Vi · θi,Vi), (10.14)

respectively. From the expressions above, θi has components θij = −gij · γj, and
Mn(k, V ) = E(Y1 . . . Yn; k, V ), i.e., the sole nth order moment, relative to a normal
distribution with mean k and variance V , each component occurs exactly ones.
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From Willink (2005), Verbeke and Molenberghs (2010) pointed out that a simple
recursive relationship is applicable to compute such moments, based on the concept
of Hermite polynomials (Hildebrand, 1962):

Mn(k, V ) = kn ·Mn−1(k, V ) +
n−1∑
j=1

vjn ·M1,...,j−1,j+1,...,n−1(k, V ), (10.15)

The last term in (10.15) represents an (n − 2)th order moment, with both the jth
and nth components left out, while kj equals the jth element of vector k and vjn
denotes the (j, n)th entry of the matrix V .

Furthermore, the EB and outcome estimations are expressed by

ĝij =
1

γj · yij
, (10.16)

ŷi =
Pni(µi − Vi · zi, Vi)
Mni(µi − Vi · zi, Vi)

, (10.17)

respectively, where Pni(µi−Vi · zi, Vi) is an ni-dimensional vector with components

Pnj(k, Vi) = E(Y1 . . . Yi,j−1Y
2
i,jYi,j+1 . . . Yn; k, V ), (10.18)

and zi equals to a vector with components zij = 1/yij. To derive the components of
(10.18), Verbeke and Molenberghs (2010) used the following recursive relationship:

Pnj(k, Vi) = kj ·Mn−1(k, V ) +
∑
k 6=j

vjk · E(Y1 . . . Yi,j−1Y
2
i,jYi,j+1 . . . Yi,k−1Yi,k+1 . . . Yn)

+ vjk · E(Y1 . . . Yi,j−1Yi,j+1 . . . Yn). (10.19)

From these developments, Verbeke and Molenberghs (2010) denoted that an obvious
consequence is present regarding the meaning of model parameters. More specif-
ically, one might argue that there still is the hierarchical interpretation of (10.4)-
(10.5) present in (10.6)-(10.7), since the combination of (10.6)-(10.7) is equivalent
to the original hierarchical model (10.4)-(10.5), where parameters ξ, Σi and D in
general, are part of a hierarchical specification. The only difference is now that
all three parameters ξ, Σi and D occur in each of the two models (10.6)-(10.7),
while these were separated in (10.4) and (10.5) by ξ and Σi, and D, respectively.
However, authors like Verbeke and Molenberghs argued that a fundamental differ-
ence is present in parameter interpretation, even to the point of bearing on the
inferences made, when one solely considers the marginal model (10.6) (Verbeke and
Molenberghs, 2000; Molenberghs and Verbeke, 2007). To clarify this, Verbeke and
Molenberghs (2010) referred to the model composed of (10.6) and (10.12), where all
three parameters ξ, Σi and D feature in the marginal model only and the hierarchi-
cal parameters, here γj, are full separated from the marginal ones. This implies that
the hierarchical parameter is estimable only because it also is presented in marginal
model (10.6), where is information in the data. In other words, it can be said that,
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in the conventional hierarchical model, all parameters are identifiable from marginal
model (10.6), i.e., the only one by which the data convey information. With these
aspects in place, Verbeke and Molenberghs (2010) concluded that the model merely
appears interpretable at a hierarchical, or enriched, level since (10.6) contains these,
and only these parameters.

3. A second normal exponential version of LMM

Now, an alternative choice for δ is obtained in equation (10.11). Equivalent to
Verbeke and Molenberghs (2010), the following choice is taken:

δ = eγj ·yij . (10.20)

Using expansion
ni∏
j=1

e−qij ·e
γj ·yij

=
+∞∑
m1=0

· · ·
+∞∑
mk=0

(−qi1)m1 . . . (−qini)mni
m1! . . .mni !

· em1·γ1·yi1+···+mni ·γni ·yini ,

(10.21)

some basic algebra (not shown here) and obtaining the same terminology as in the
first normal exponential case, the following hierarchical, prior, posterior model, EB
and outcome estimations are derived:

f(yi | qi) =

∏ni
j=1 e

γj ·yij · e−qij ·e
γj ·yij · e−µ

′
i·λm−

1
2
·[(yi−µi)

′ ·V −1
i ·(yi−µi)+λ

′
m·Vi·λm)]

(2 · π)ni/2· | Vi |1/2 ·
∑

m

(∏ni
j=1

(−qij)mj
mj !

) ,

(10.22)

f(qi) =
∑
m

(
ni∏
j=1

(−qij)mj
mj!

)
· eµ

′
i·λm+ 1

2
λ
′
m·Vi·λm , (10.23)

f(qi | yi) =

ni∏
j=1

eγj ·yij · e−qij ·e
γj ·yij

(10.24)

q̂ij = e−γj ·yij , (10.25)

ŷi =

∑
m

[∏ni
j=1

(−e−γj ·yij )mj

mj !

]
· eµ

′
i·λm+ 1

2
λ
′
m·Vi·λm · (µi + Vi · λm)∑

m

[∏ni
j=1

(−e−γj ·yij )mj

mj !

]
· eµ

′
i·λm+ 1

2
λ
′
m·Vi·λm

, (10.26)

where m ranges over all non-negative integer vectors m = (m1, . . . ,mni), and λm
consist of components λmj = (mj + 1) · γj.

10.3.2 Exchangeable Data with Compound-Symmetry Covari-
ance

In this part, a special but enlightening case of exchangeable, compound symmetry data is
considered, meaning that all members of a cluster have the same mean µi and a compound-
symmetry structure for the variance-covariance matrix, i.e., Vi = σ2 · Ini + d · Jni , where
Ini is an ni-dimensional identity matrix and Jni is an ni x ni matrix consisting of 1’s.

80



Similar to Section 10.3.1, this section will be sub-divided into three parts, i.e., expressing
the hierarchical, prior, posterior model, EB and outcome estimations for (1) the standard
LMM, (2)a first normal exponential version of LMM and (3) a second normal exponential
version of LMM. Since this chapter only focuses on the principle idea behind enriched-data
problems and essential non-identifiability, no attention will be given on the derivations,
but mainly on the expressions.

1. The standard LMM

To express the hierarchical, prior, posterior model, EB and outcome estimations of
the standard LMM, Verbeke and Molenberghs (2010) first derived the following two
main expressions:

V −1
i =

1

σ2
·
(
Ini −

d

d · ni + σ2
· Jni

)
, (10.27)

| Vi | = σ2·ni + ni · σ2·(ni−1) · d. (10.28)

Imputing both expressions (10.27) and (10.28) in their derivations, Verbeke and
Molenberghs (2010) formulated the hierarchical, prior, marginal and posterior model
as

Yi | bi ∼ N(1ni · µi + 1ni · bi, σ2 · Ini), (10.29)

bi ∼ N (0, d) , (10.30)

Yi ∼ N(1ni · µi, Vi = σ2 · Ini + d · Jni), (10.31)

bi | Yi ∼ N

[
d · ni

d · ni + σ2
· (ȳi − µi),

σ2

d · ni + σ2
· d
]
, (10.32)

respectively, where 1ni denotes a ni-vector of ones and ȳi be the average of the
components of outcome vector yi.

The EB and outcome estimations are given by

b̂i =
d · ni

d · ni + σ2
· (ȳi − µi), (10.33)

Ŷi =
d · ni · ȳi + σ2 · µi

d · ni + σ2
· 1ni , (10.34)

respectively.

2. A first normal exponential version of LMM

Like in the first normal exponential version of LMM in Section 10.3.1, where pos-
terior density (10.12) is coupled with marginal model (10.6), the marginal model
(10.31) will be coupled with posterior density

f(gi | yi) = γ · ȳi · e−gi·γ·ȳi , (10.35)
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leading to the following prior and hierarchical model respectively:

f(gi) = γ · e−gi·µi·γ+ 1
2
· g

2
i ·γ

2

ni
·(d·ni+σ2) ·

[
ni · µi − gi · γ · (d · ni + σ2)

ni

]
, (10.36)

f(yi | gi) =
ni · ȳi · e

− 1
2
·
[

1
σ2 ·(yi−1ni ·ȳi)

′ ·(yi−1ni ·ȳi)+
ni

d·ni+σ2 ·(ȳi−µi)2

]
−gi·γ·(ȳi−µi)

(2 · π)ni/2 | Vi |1/2 ·e
1
2
·
g2
i
·γ2

ni
·(d·ni+σ2) · [ni · µi − gi · γ · (d · ni + σ2)]

.

(10.37)

Furthermore, the EB and outcome predictions are expressed by

ĝi =
1

(γ · ȳi)
, (10.38)

ŷi =

{[
ni · µi − 1

ȳi
· (d · ni + σ2)

]2

+ ni · (d · ni + σ2)

}
· 1ni

ni ·
[
ni · µi − 1

ȳi
· (d · ni + σ2)

] , (10.39)

respectively.

3. A second normal exponential version of LMM

At last, marginal model (10.31) will be coupled with posterior density

f(qi | yi) = eγ·ȳi−qi·e
γ·ȳi . (10.40)

Th following expressions are then obtained for hierarchical and prior model, respec-
tively:
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f(qi) =
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m=0

(−qi)m

m!
· eµi·γ·(m+1)+ 1

2
· γ

2·(m+1)2

ni
·(d·ni+σ2)

. (10.42)

For the EB and outcome predictions, the following formulas hold:

q̂i = e−γ·ȳi , (10.43)

ŷi =

∑∞
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(e−γ·ȳi )m
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2
· γ
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,

(10.44)
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Chapter 11

Analyzing the Recurrent Asthma
Attacks in Children

Until now, only a theoretical discussion has been provided for the WGN model (4.5)-(4.8).
The asthma data of Chapter 2 will be analyzed with the proposed WGN model (4.5)-(4.8).
Specifically, the exponential model will be used here to investigate the modeling framework
on the data. Descriptive statistics of the dataset can be found in Appendix G.1.

Let Timeij represents the time to recurrence of an asthma attack, and assume the same
terminology as in Section 4.1. Then, Timeij will be modeled with the following (random-
intercept) WGN model:

Timeij | bi, θij ∼Weibull(1, kij), (11.1)

kij = θij · eξ0+ξ1·Ti+bi , (11.2)

bi ∼ N(0, d), (11.3)

θij ∼ Gamma(α, 1/α), (11.4)

where Ti = 0 if patient i got a placebo and 1 if patient i got the drug.

The remainder of this chapter is organized as follows.
In Section 11.1, different hierarchical modeling choices will be explored for (11.1)-(11.4),
i.e., (1) the traditional Exponential model (without gamma and normal random effect),
(2) the Exponential-gamma model (without normal random effect), (3) the Exponential-
normal model (without Gamma random effect) and (4) the Exponential-gamma-normal
model. Full likelihood estimation (Section 4.2.1) is used to explore all models. Next,
focusing on the combined model (referred as (4)) and due to the contribution of Molen-
berghs et al (2014), the pairwise likelihood (Section 4.2.2) principle is compared with the
full likelihood, both when taking censoring into account or not. Section 11.2, on the other
hand, focuses on the comparison between the hierarchical and its marginalized combined
model, both fitted with full and pairwise likelihood. Since Section 11.1 restricted the
modeling framework to a random-intercept approach, Section 11.2 will provide a discus-
sion on the (more extended) random-slope approach, where formula (11.2) is replaced by
kij = θij ·eξ0+(ξ1+b2i)·Ti+b1i . Both random effects are assumed to be independently normally
distributed. Additionally, Molenberghs et al (2014) and Efendi et al (2014) extended this
research by performing a simulation study to evaluate the performance of the hierarchical
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model, fitted under full likelihood and pairwise likelihood, and of the hierarchical and its
marginalized combined model, respectively. A brief discussion of their additional studies
can be found in Molenberghs et al (2014) and Efendi et al (2014). While Section 11.3
discusses the results performed from the gradient function to assess fit of the random
effects distribution, local influence diagnostics are discussed in Section 11.4. To conclude,
a brief discussion of non-identifiability problems is provided.

In this chapter, statistical software package SAS is used to perform the analysis. All code
can be found in Appendix G.2.

11.1 Several Hierarchical Modeling Strategies with

different Estimation Strategies

By using the ”NLMIXED” procedure in SAS, all four models, i.e., (1) the traditional
Exponential model (without gamma and normal random effect), (2) the Exponential-
gamma model (without normal random effect), (3) the Exponential-normal model (with-
out Gamma random effect) and (4) the Exponential-gamma-normal model, can easily be
fitted for the asthma data. Results of the fitted models are listed in the Table 11.1.

Table 11.1: Parameter estimates and standard errors for the regression coefficients in (1) the
Exponential model, (2) Exponential-gamma model, (3) Exponential-normal model
and (4) Exponential-gamma-normal model, also referred as the CM. Maximum
likelihood estimation with partial marginalization (Section 4.2.1) was done.

Exponential Exponential-gamma
Effect Parameter Estimate (s.e.) Estimate (s.e.)
Intercept ξ0 −3.3709 (0.0772) −3.9782 (15.354)
Treatment effect ξ1 −0.0726 (0.0475) −0.0755 (0.0605)
Shape parameter λ 0.8140 (0.0149) 1.0490 (16.106)

Std. dev. random effect
√
d −− −−

Gamma parameter α −− 3.3192 (0.3885)
-2 log-likelihood 18693 18715

Exponential-normal Combined
Effect Parameter Estimate (s.e.) Estimate (s.e.)
Intercept ξ0 −3.8095 (0.1028) −3.9923 (20.337)
Treatment effect ξ1 −0.0825 (0.0731) −0.0887 (0.0842)
Shape parameter λ 0.8882 (0.0180) 0.8130 (16.535)

Std. dev. random effect
√
d 0.4097 (0.0386) 0.4720 (0.0416)

Gamma parameter α −− 6.8414 (1.7146)
-2 log-likelihood 18611 18629

Since main interest of researchers lies in the exploration of the overall treatment effect
on patients, a formal assessment of the treatment effect ξ1 is explored for all four models
(Table 11.2). Similar results are obtained for all four models, in such a way that the
treatment effects are similar in strength. Including both random effects, however, reduces
the evidence, relative to the exponential model. However, too parsimonious an association
structure might lead to liberal test behaviour.
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Table 11.2: Wald test for the assessment of treatment effect.

Model Z-value p-value
Exponential −1.5283 0.1264
Exponential-gamma −1.2480 0.2120
Exponential-normal −1.1293 0.2588
Exponential-gamma-normal −1.0534 0.2921

Similar to the maximum likelihood principle with partial marginalization (Section 4.2.1)
above, pairwise likelihood (Section 4.2.2) is considered to model the Exponential-gamma-
normal model, with proper inclusion of the censored observations. Since the SAS pro-
cedure ”NLMIXED” does not contain pairwise likelihood standardly, a SAS macro was
developed by Molenberghs et al (2014), in conjunction with the ”NLMIXED” procedure,
to perform pairwise likelihood (Appendix G.2). Results of this particular estimation
technique, both incorporating with and without censoring, can be found in Table 11.3.

Table 11.3: The Exponential-gamma-normal model fitted with and without censoring. Both
maximum likelihood with partial marginalization and pairwise likelihood estimation
was done. (model-based s.e.; empirically corrected s.e.)

Full likelihood Pairwise likelihood
Effect Parameter Estimate (s.e.) Estimate (s.e.)

Without censoring
Intercept ξ0 −3.9923 (20.337) −3.4862 (6.2316; 0.0856)
Treatment effect ξ1 −0.0887 (0.0842) −0.1060 (0.0203; 0.0953)
Shape parameter λ 0.8130 (16.534) 0.8272 (5.1551; 0.0049)

Std. dev. random effect
√
d 0.4720 (0.0416) 0.3958 (0.0202; 0.0383)

Gamma parameter α 6.8414 (1.7146) 6.7758 (0.6648; 1.1875)

With censoring
Intercept ξ0 −4.0195 (28.663) −3.6233 (0.4998; 0.09381)
Treatment effect ξ1 −0.1115 (0.0996) −0.1269 (0.0221; 0.10571)
Shape parameter λ 0.7882 (22.592) 0.9189 (0.4590; 0.0003)

Std. dev. random effect
√
d 0.5620 (0.0506) 0.4443 (0.0211; 0.03906)

Gamma parameter α 3.5633 (0.6281) 4.5882 (0.3627; 0.71248)

When full likelihood is performed, results in Table 11.3 indicate a presence of overdisper-
sion, regardless of whether censoring is taken into account in the model. However, since
the standard errors are far from plausible, difficulties with convergence can be present.
This possible issue does not seem to occur in the pairwise likelihood estimation technique,
but with the additional observation that overdispersion now disappears.

To address this issue even further, Molenberghs et al (2014) refitted all four models of
Table 11.3, i.e., the Exponential-gamma-normal model (1) with incorporating censoring
and fitted with full likelihood, (2) with incorporating censoring and fitted with pairwise
likelihood, (3) without incorporating censoring and fitted with full likelihood, and (4)
without incorporating censoring and fitted with pairwise likelihood, with the additional
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constrain of setting λ equally to one. This approach is adopted here, where the obtained
results are presented in Table 11.4.

Table 11.4: Parameter estimates and standard errors for the regression coefficients in the hi-
erarchical combined model with λ = 1. Incorporation was done with and without
censoring . Estimation was proceeded with both maximum likelihood with partial
marginalization and pairwise likelihood. (model-based s.e.; empirically corrected
s.e.)

Full likelihood Pairwise likelihood
Effect Parameter Estimate (s.e.) Estimate (s.e.)

Without censoring
Intercept ξ0 −4.1993 (0.0713) −3.6758 (0.0176; 0.0869)
Treatment effect ξ1 −0.0887 (0.0842) −0.1060 (0.0203; 0.0953)

Std. dev. random effect
√
d 0.4721 (0.0416) 0.3958 (0.0202; 0.0383)

Gamma parameter α 6.8410 (1.7144) 6.7754 (0.6648; 1.1874)

With censoring
Intercept ξ0 −4.2575 (0.0833) −3.7072 (0.0160; 0.0875)
Treatment effect ξ1 −0.1116 (0.0996) −0.1267 (0.0218; 0.1122)

Std. dev. random effect
√
d 0.5620 (0.0506) 0.4446 (0.0177; 0.0424)

Gamma parameter α 3.5634 (0.6282) 4.5833 (0.1747; 0.1895)

Contrary to the fitted results of Table 5, no disparity is present in the overdispersion
results and the standard errors are plausible throughout. Equivalent to the previous
discussed analyses (Table 11.2), the assessment of treatment effect in the combined model
is explored for all four models (Table 11.5), indicating similar results as before (Table
11.2).

Table 11.5: Wald test for the assessment of treatments effect in the Exponential-gamma-normal
model.

Model Z-value p-value

Full Likelihood
Without censoring −1.0534 (0.1461)
With censoring −1.1205 (0.1312)

Pairwise Likelihood
Without censoring −1.1123 (0.1330)
With censoring −1.1292 (0.1294)

A few comments are in place.
First, similar to the findings of Molenberghs et al (2014), a faster convergence time was
reached with pseudo-likelihood, when comparing it to the full likelihood methodology. Sec-
ond, Molenberghs et al (2014) pointed out that pseudo-likelihood is more robust against
the choice of starting values. Intuitively, this seems reasonable, since the computational
behavior pattern of pairwise likelihood principle is comparable when analyzing bivariate
data. The higher the order of the likelihood, the more vulnerable to numerical instabilities.
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To conclude the discussion on hierarchical modeling for the asthma dataset, a choice of
model is made based on the following three aspects: (1) convergence presence, (2) best
accounting for censoring and (3) redundant presence of the shape parameter. As result,
the exponential-gamma-normal model with incorporating censoring and fitted with full
likelihood is chosen as final one. However, once should be careful not to over-interpret
the results derived from a couple of data analyses. Therefore, Molenberghs et al (2014)
additionally performed a simulation study to evaluate the exponential-gamma-normal
under full likelihood and pairwise likelihood. Specifically, different settings were consid-
ered, in order to explore the impact of sample size, censoring percentage, and estimation
method. The following sample sizes, censoring percentages and estimation methods were
considered:

1. Sample sizes consisting of 50, 100 and 200 subjects;

2. A total of 10%, 25% and 50% of the observations within a subject are censored;

3. Full likelihood and pseudo-likelihood.

For each different setting (9 in total), 500 datasets were generated. Since this thesis does
not cover simulation studies, its relevant to present the concluding remarks of Molenberghs
et al’s (2014) simulation study. First, the proportion of non-converging increased with
censoring. Secondly, pseudo-likelihood reduces consistency relative to the full likelihood
principle. Thirdly, with increasing censoring percentage and under full likelihood, loss
of some consistency will be present of the estimates of the exponential-gamma-normal
model. A detailed discussion of the simulation study can be found in Molenberghs et al
(2014).

11.2 The Combined Model and its Marginalized Ver-

sion

Like mentioned before, Section 11.1 mainly focuses on the random-intercept approach.
In this section, attention will be given on the random-slope approach, where the same
estimation strategies, i.e., full likelihood and pairwise likelihood, are considered to explore
the hierarchical exponential-gamma-normal model (with incorporation of censoring) and
its marginalized version (Section 5.1). In the normal random effects structure, let b1i the
random intercept with variance d1 and denote b2i the random slope with variance d2 for
subject i, i = 1, . . . , 232. Both random effects are assumed to be independent. Results of
the fitted models are listed in Table 11.6.

From Table 11.6, a few remarks are drawn. Looking only at the full likelihood outcomes,
similar results were achieved between the hierarchical and marginalized combined model.
Contrary to Section 11.1, these models include two normally distributed random effects.
Therefore, connector function (5.5) uses a different vector zij, implying a change in the
treatment effect estimate upon the marginalization. However, as can be observed, an
extreme change is not present here. Furthermore, likelihood ratios are invariant (Griswold
and Zener, 2004), since marginalization does not change the likelihood.
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Table 11.6: Parameter estimates and standard errors for the regression coefficients in the hi-
erarchical and its marginalized combined model, with censoring. Estimation was
done with both maximum likelihood with partial marginalization and pairwise like-
lihood. (model-based s.e.; empirically corrected s.e.)

Hierarchical Combined Marginalized Combined
Full likelihood Pairwise likelihood Full likelihood Pairwise likelihood

Effect Parameter Estimate (s.e.) Estimate (s.e.) Estimate (s.e.) Estimate (s.e.)
Treatment effect ξ1 −0.113 (0.106) −0.127 (0.105) −0.111 (0.102) −0.127 (0.105)
Shape parameter λ 0.014 (0.001) 0.025 (0.002) 0.017 (0.001) 0.027 (0.003)
Std. dev. random effect

√
d1 0.560 (0.068) 0.445 (0.039) 0.560 (0.068) 0.445 (0.039)

Std. dev. random effect
√
d2 0.077 (0.734) 11E− 4 (11E− 4) 0.077 (0.741) 20E− 6 (20E− 6)

Gamma parameter α 3.566 (0.632) 4.583 (0.708) 3.566 (0.632) 4.584 (0.708)
-2 log-likelihood 16649 16649

In the pairwise likelihood results, equivalent to the full likelihood ones, similar results
were obtained between both models. Even though the estimated random slope variance
is approximately zero for all models, this is more pronounced in the pairwise-likelihood
results. However, this does not contradict the results from the full likelihood, where
the estimated random slope variance was non significant. The treatment effect is not
significant in all models!

While Section 11.1 did not provided any discussion on the conjugate random effect param-
eter α, a brief discussion of the estimate will be given. Exploring the standard errors of
all four models in Table 11.6, a significant conjugate random effect parameter is present.
Thus, when fitting all models, overdispersion seems to be present in the data, indicating
that the need to account for overdispersion in the model is necessary to adequately fit the
data.

From a computational point of view, no convergence problems arise when fitting all mod-
els. To conclude the discussion on marginal modeling, it should be mentioned that once
should be careful not to over-interpret the results (similar to the hierarchical modeling
strategies of Section 11.1). A similar simulation study from Molenberghs et al (2014) was
constructed by Efendi et al (2014), but now evaluating the performance of the hierarchi-
cal combined model and its marginalized version. The following sample sizes, censoring
percentages ad estimation methods were considered:

1. Sample sizes consisting of 20, 40, 60 and 80 subjects, with 10 observations per
subject;

2. A total of 0%, 10%, 25% and 50% of the observations within a subject are censored;

3. Full likelihood and pseudo-likelihood.

For each different setting (16 in total), 500 replicants were generated. From Efendi et
al’s (2014) study, a few conclusions were found. Similar to Molenberghs et al (2014), the
percentage of non-convergence increased with censoring, but reduces with higher number
of sample sizes. Pairwise likelihood had a little beneficial impact on convergence, at the
cost of increased computation time. Computational time increased with sample size, as
well as with censoring. From a estimation point of view, relative bias was rather insensitive
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Figure 11.1: Distribution of the EB estimation of the conjugate (left) and normal random
effect (right). The underlying kernel densities for both distributions are plotted
as well.

to the estimation method. The model based and Monte Carlo standard errors are quite
similar, as would expected. A full detailed discussion of the study can be found in Efendi
et al (2014).

11.3 Gradient Function for Assessing Fit of Random-

Effects Distribution

In Sections 11.1 and 11.2, no attention was given to the EB estimation of the conjugate
random effect and normal random effect, explored in Section 4.3.2 and 4.3.1, respectively.
Therefore, this section places emphasis on the EB estimation of the conjugate and normal
random effect in the exponential-gamma-normal model, defined in Section 11.1 (random-
intercept approach). Moreover, the gradient function of Section 8.2 is used as graphical
exploratory diagnostic tool to assess whether the assumed random-effects distribution
produces an adequate fit to the data, in terms of marginal likelihood. In particular,
this is done for the normal random effect (11.3). In case of model misspecification, the
gradient function gives an important, albeit informal, indication on how the model can
be improved in terms of random-effects distribution.

To compute the EB estimation of both random effects, different strategies are obtained.
For the normal random effect, no extra procedures have to be written in SAS, since the
SAS procedure ”NLMIXED” already implemented a standard output for EB estimation.
For the gamma random effects, a modified version of Iddi et al’s (2014) macro is used to
derive the EB estimation. Results of both EB estimations are found in Figure 11.1.
To achieve the gradient function of the normal random effect, related to model (11.1)-
(11.4), a modified version of the SAS code from Verbeke and Molenberghs (2013) is
used. The resulted gradient function is shown in Figure 11.2. Also indicated by Figure
11.1 (right), the gradient function indicates that the model can be improved in terms of
likelihood by moving probability mass from the region [-1.2; -0.6] toward the region [-0.4;
-0.2].
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Figure 11.2: Gradient function and 95% pointwise confidence bands for the hierarchical
exponential-gamma-normal model, where, conveniently, normal distribution is as-
sumed as a distribution for random intercepts.

One way to improve the model is by replacing the normality assumption for the random
intercept bi by a flexible distribution that captures most distributions quite well. A possi-
ble good choice, proposed by Verbeke and Lesaffre (1996) and Verbeke and Molenberghs
(2000), is a finite mixture of normals, as they can handle skewness as well as symmetry,
unimodality as well multimodality. By looking at the kernel density plot in Figure 11.1
(right), it seems reasonable to assume the following combined model:

Timeij | bi, θij ∼Weibull(1, kij), (11.5)

kij = θij · eξ0+ξ1·Ti+bi , (11.6)

bi ∼ π1 ·N(µ1, d1) + π2 ·N(µ2, d2), (11.7)

θij ∼ Gamma(α, 1/α), (11.8)

with π1 + π2 = 1. Additionally, Verbeke and Molenberghs (2013) pointed out that the
assumption E(bi) is imposed by the restriction π1 ·µ1 +π2 ·µ2 = 0. Intuitively, by looking
at the kernel density plot in Figure 11.1 (right), an approximate estimation can be made
for some parameters of the random intercept distribution (11.7), i.e., µ1 ≈ −0.2, µ2 ≈ 0.1
and d1 < d2.

To end the discussion on the gradient function, it should be noted that test-statistic (8.5)
can be used to check these conclusions. Here, a significance outcome is expected for
non-normality, and a significant one is expected for the finite mixture of normals (11.7).

11.4 Local Influence Analysis

To explore the behavior pattern on recurrent asthma attacks of patients, local influence
diagnostics is advised. Therefore, the local influence paradigm of Rakhmawati, Molen-
berghs, Verbeke and Faes (2014) is used to detect outlying behavior patterns in the
exponential-normal (EN) and exponential-gamma-normal (EGN) model of Section 11.1
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(random-intercept approach). Index plots (versus patient ID’s) for various local influence
analysis are given in Figure 11.3. The top row of the plot represents the total local in-
fluence, with subsequent rows representing influence for the following sub-vectors: fixed
effects {ξ0, ξ1}, shape parameter λ, random-intercept variance d, and, for the EGN model,
overdispersion parameter α, respectively. Patient # 182 stand out in the EGN with large
total influence C182, when compared to other patients. However, compared to the EN
model, no large total influence C182 was observed there. Overall, no outlying influential
patients were observed in the EN, while only one (Patient # 182) was indicated by the
EGN. Its therefore important to explore underlying reasons for observed local influence
C182 in the EGN. By looking at the sub-vectors, no large influence on {ξ0, ξ1}, λ and d
were observed for # 182, whereas a large influence on overdispersion parameter α was
obtained for # 182. In other words, by adding an overdispersion parameter to the EN
model, resulting in the EGN model, opportunities are created that specific subjects (here
patient # 182) will affect that parameter. Adding such a parameter also influence other
patients in their estimates. For example, patient # 127 imputed a large influence on
shape parameter λ, while # 7 and # 69, for example, indicate a large influence on d in
the EGN model. The interpretable components do not lead to additional insight (Figure
11.4).

11.5 Discussion on non-identifiability problems

To end the discussion of the performed asthma dataset analysis, a brief discussion is
provided about non-identifiability problems in the asthma dataset. To do so, reference
is made to Molenberghs, Njagi, Kenward, and Verbeke (2012), where, for purpose of
illustration, a subset of data is considered not consisting of censored observations, i.e.,
data points for which the corresponding ”end-to-observation” period corresponds to an
attack. Since these authors uses a parametric proportional hazards Weibull-Gamma frailty
model, abstraction is made from the proposed exponential-gamma-normal model (Chapter
11) in such a way that this section is only used informally.

In their study, a defined Gamma posterior is replaced with a normal one. As the marginal
fit remains the same for both choices, different predictions were observed for the condi-
tional hazard. In the Gamma choice, a prediction was created which lies much closer to
the population hazard than the normal choice. Therefore, Molenberghs, Njagi, Kenward,
and Verbeke (2012) showed that their disparate inferences occur in disturbing conjunction
with an unaltered marginal model in the asthma dataset.
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Figure 11.3: Asthma Data. Local Influence plots
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Figure 11.4: Asthma Data. Plot of interpretable components of local influence
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Chapter 12

Conclusion

The general objective of the thesis was to propose flexible statistical methods to overdis-
persed, hierarchical data. Specifically, full attention was given to the WGN model of
Molenberghs et al (2010), that fully accounts for overdispersion with conjugate random
effects and takes the hierarchical structure into account by normal random effects. Due
to the ’new’ existence of the framework, a good amount of research is done nowadays,
leading to new methodological insights. The structure of the thesis is organized as follows:
(1) a theoretical discussion about the framework and (2) a practical application were the
methodology is applied to. In the former one, special attention is provided on the devel-
oped mathematical derivations. For the latter one, the asthma dataset is used to show
the convenient improvements of fitting, when comparing it with classical methodologies.

In Chapter 3 and 4, a broad and extensive discussion is outlined for the proposed CM
framework of Molenberghs et al (2010). As starting point, a general overview is provided
of the standard GLM framework. Apart from taking into account correlation induced by
repeated measurements from the same cluster (subject) and the association between the
different outcomes with normal random effects, the often-restrictive mean-variance pre-
scription in the model for the non-Gaussian outcome has explicitly been addressed, and
taken into account by the inclusion of conjugate random effects. Estimation strategies like
maximum likelihood with partial marginalization and pairwise likelihood has been sug-
gested as two main techniques to obtain parameter fits. As pointed out, both estimation
strategies can easily be performed in standard statistical software packages. Due to the
strong conjugacy principle, the WGN model is explored in detail to model time-to-event
outcomes, alongside with its marginalized version (Chapter 5).

Nowadays, many research is done on joint modeling, due to the large amount of possibili-
ties. While this thesis places focus on four cases, its convenient to say that lot of research
still needs to be done on this topic. For example, due to the flexibility of the WGN model,
a research gap opens to the incorporation of informative censoring (Section 6.5.2), an issue
that was problematic in the past when modeling time-to-event data. Moreover, consider-
able research is still ongoing on exploring goodness-of-fit tests and diagnostic tools for the
proposed WGN model. For example, Drivandi, Verbeke and Molenberghs (2014) recently
developed a novel diagnostic test based on the gradient function of Section 8.2 to assess
the random-effects distribution. They established asymptotic properties for their test
and showed that the proposed test statistic converges to a weighted sum of independent
chi-squared random variables each with one degree of freedom under a correctly specified
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random-effects distribution. Additionally, they developed a parametric bootstrap algo-
rithm for small samples, and denoted that the strategy can be used to check the adequacy
of any distribution for random effects in a wide class of mixed moels, including LMM,
GLMM and non-linear mixed models, with univariate as well as multivariate random
effects.

However, as has been pointed out in Chapter 7 & 10, sensitivity analysis seems to be a re-
current theme. Due to the strong connection between the longitudinal and time-to-event
setting, and the missing data one, an extended shared random effects joint model (Njagi et
al, 2013c) is explored in Chapter 7, where a characterization of MAR is provided within.
While the framework has been built conceptually, the elaborate random-effects structure
has been used as an avenue for sensitivity analysis in this context. Given the interrela-
tionships that arise among model components, model formulation under the framework
studied in Chapter 7 becomes exceedingly complex. The effect of such difficulties on the
studied framework, especially on the results established, and the possibility of expanding
the framework to take into account such difficulties, requires further investigation.

The analysis made for the asthma dataset showed that the extended framework increased
in model fit, when comparing it to traditional modeling frameworks. Therefore, its im-
portant to note that aspects like overdispersion and hierarchical structure need to be
taken into account when making appropriate predictions and conclusions. Since general
conclusions cannot be made on a few data analysis, simulation studies are put forward
to explore the extended framework in detail. To conclude, it should be said that once
should not consider the framework as best fit, but more as an elegant way of dealing with
overdispersion and hierarchical structure simultaneously.
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Chapter A

Supplementary Material for Chapter
3

A.1 Derivation of the Mean and Variance for the Ex-

ponential Family

Theorem A.1.1. Suppose a random variable Y that follows the exponential family with
density

f(y) ≡ f(y | η, φ) = exp{φ−1 · [y · η − ψ(η)] + c(y, φ)}. (A.1)

Then, the mean and variance of Y equals

E(Y ) = ψ′(η), (A.2)

Var(Y ) = φ · ψ′′(η), (A.3)

Proof. (for the continuous case) The random variable Y possesses the characteristic that
the area under the density function equals 1:∫ +∞

−∞
f(y | η, φ)dy =

∫ +∞

−∞
exp{φ−1 · [y · η − ψ(η)] + c(y, φ)}dy = 1.

Calculating the first and second derivates of this integral w.r.t. η gives:{
∂
∂η

∫ +∞
−∞ f(y | η, φ)dy = 0

∂2

∂η2

∫ +∞
−∞ f(y | η, φ)dy = 0

m{∫ +∞
−∞ [y − ψ′(η)] · f(y | η, φ)dy = 0∫ +∞
−∞ [φ−1 · (y − ψ′(η))2 − ψ′′(η)] · f(y | η, φ)dy = 0

m{
E(Y ) = ψ′(η)

Var(Y) = φ · ψ′′(η)

Trivial derivations can be done for the discrete case, where the integral is replaced by the
summation. �
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A.2 Generic Approximations for Marginal Model El-

ements in the Combined Model Framework

In general, an approximate mean can be derived using the second degree Taylor expansion,
around bi = 0,

κij ≈ h(ηij) + h′(ηij) · z
′

ij · bi +
1

2
· h′′(ηij) · z

′

ij · bi · b
′

i · zij,

i.e.,

E(Yij) ≈ $ij ·
[
h(η

(0)
ij ) +

1

2
· h′′(η(0)

ij ) · z′ij ·D · zij
]
, (A.4)

where η
(0)
ij = x

′
ij · ξ. A general variance expression can be derived in a similar fashion,

based upon:

Var(Yij) = E{E[Var(Yij | bi, θij)]}+ E{Var[E(Yij | bi, θij)]}+ Var{E[E(Yij | bi, θij)]},

To simplify ensuing derivations, write the variance function as

ω(µcij) = ωij(θij · κij) = φ · ψ′′[g(θij · κij)],

Note that ω(·) allows for all of the traditional mean-variance relationships of GLM’s for
Gaussian, binary, binomial, count, and time-to-event data. Straightforward but tedious
algebraic derivations, based on expansions around θij = 1 and bi = 0, leads to:

Var(Yij) ≈ ω
[
h(η

(0)
ij )
]

+ ω′
[
h(η

(0)
ij )
]
· ($ij − 1) +

1

2
· ω′′

[
h(η

(0)
ij )
]
· h2(η

(0)
ij ) · (σ2

ij +$2
ij

− 2 ·$ij + 1) +
1

2
· ω′′

[
h(η

(0)
ij )
]
· h(η

(0)
ij ) · h′(η(0)

ij ) · ($2
ij + σ2

ij) · z
′

ij ·D · zij

+ σ2
ij · h2(η

(0)
ij ) +

1

2
· ω′
[
h(η

(0)
ij )
]
· h′′(η(0)

ij ) ·$ij · z
′

ij ·D · zij + σ2
ij ·
[
h′(η

(0)
ij )
]2

· z′ij ·D · zij + σ2
ij ·
[
h
′2(η

(0)
ij ) + h(η

(0)
ij ) · h′′(η(0)

ij )
]
· z′ij ·D · zij. (A.5)

Likewise, for the covariance function:

Cov(Yij, Yik) ≈ σijk ·
[
h(η

(0)
ij ) · h(η

(0)
ik ) +

1

2
· h(η

(0)
ij ) · h′′(η(0)

ik ) · z′ik ·D · zik +
1

2
· h(η

(0)
ik )

·h′′(η(0)
ij ) · z′ij ·D · zij + h′(η

(0)
ij ) · h′(η(0)

ik ) · z′ij ·D · zik
]

+$ij · σ2
ik · h′(η

(0)
ij )

· h′(η(0)
ik ) · z′ij ·D · zik. (A.6)

Here, σijk is the covariance between θij and θik. In case these effects are assumed to
be independent, a large portion of (A.6) then cancels, with covariance induced solely by
the effects bi. In case all θij are equal, σijk ≡ σij. Evidently, (A.5) and (A.6) lead to
approximate expressions for the correlations, too. Of course, in situations where closed
forms exist, these expressions need not be used.

Needless to say that the above approximations may or may not be accurate, depending
on the context. Therefore, their use should be seen as poor man’s choice, when no explicit
forms are available. Fortunately, closed forms are available for the Weibull (Section 4.1)
case.
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Chapter B

Supplementary Material for Chapter
4

B.1 Marginal Density and Moments of the Weibull-

Gamma-Normal Model

In this part of the thesis, the marginal density of the model specified by (4.1)–(4.3) is
derived. First replace the predictor x

′
ij · ξ + z

′
ij · bi in (4.1) by µ, and integrate

f(y | θ) = λ · ρ · θ · yρ−1 · eµ · e−λ·yρ·θ·eµ

over the general gamma distribution of θ, i.e., over one component of (4.2):

f(y) =
λ · ρ · yρ−1 · eµ

βα · Γ(α)
·
∫
θ

θα · e−θ·[1/β+λ·yρ·eµ] · dθ =
λ · ρ · yρ−1 · eµ · α · β
(1 + λ · β · yρ · eµ)α+1

, (B.1)

which easily follows upon setting z = 1/β + λ · yρ · eµ.

Now, for the general case, first observe that

e−λ·y
ρ
ij ·θij ·e

µij+z
′
ij ·bi

=
+∞∑
mj=0

(−1)mj

mj!
· λmj · ymj ·ρij · θmjij · emj ·(µij+z

′
ij ·bi).

It then follows that

f(yi | θi) =

ni∏
j=1

λ · ρ · θij · yρ−1
ij ·

1

(2 · π)q/2· | D |1/2

·
∫
b

eµij+z
′
ij ·bi · e−λ·y

ρ
ij ·θij ·e

µij+z
′
ij ·bi · e

1
2
·b′i·D−1·bi · dbi (B.2)

=
∑

(m1,...,mni )

ni∏
j=1

(−1)mj

mj!
· λmj+1 · ρ · y(mj+1)·ρ−1

ij · θmj+1
ij

· 1

(2 · π)q/2· | D |1/2
·
∫
b

e(mj+1)·(µij+z
′
ij ·bi)−

1
2
·b′i·D−1·bi · dbi. (B.3)
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Now, similar to the binary case (Molenberghs et al, 2010), write

−1

2
· b′i ·D−1 · bi + (mj + 1) · (µij + z

′

ij · bi) = −1

2
· (bi − t)

′ ·D−1 · (bi − t) + l, (B.4)

with

t = (mj + 1) ·D · zij, l = (mj + 1) ·
[
µij +

1

2
· (mj + 1) · z′ij ·D · zij

]
.

Combining (B.3) with (B.4) produces

f(yi | θi) =
∑

(m1,...,mni )

ni∏
j=1

(−1)mj

mj!
· λmj+1 · ρ · y(mj+1)·ρ−1

ij · θmj+1
ij

· e(mj+1)·
[
µij+

1
2
·(mj+1)·z′ij ·D·zij

]
. (B.5)

Further integration over the gamma distribution produces

f(yi) =
∑

(m1,...,mni )

ni∏
j=1

(−1)mj

mj!
·
λmj+1 · ρ · y(mj+1)·ρ−1

ij · e(mj+1)·
[
µij+

1
2
·(mj+1)·z′ij ·D·zij

]
β
αj
j · Γ(αj)

· Ij,mj

(B.6)

with

Ij,mj =

∫
θ

θ
mj+αj
ij · e−θij/βj · dθij = β

mj+αj+1
j · Γ(mj + αj + 1) (B.7)

Plugging (B.6) into (B.7) yields

f(yi) =
∑

(m1,...,mni )

ni∏
j=1

(−1)mj

mj!
·

Γ(αj +mj + 1) · βmj+1
j

Γ(αj)
· λmj+1 · ρ · y(mj+1)·ρ−1

ij

· e(mj+1)·
[
x
′
ij ·ξ+

1
2
·(mj+1)·z′ij ·D·zij

]
. (B.8)

In case censorship applies, it is easy to integrate (B.8) over the interval [0, Cij] or, in a
multivariate fashion, over the cube [0, BCi]:

F (Ci) =
∑

(m1,...,mni )

ni∏
j=1

(−1)mj

mj!
·

Γ(αj +mj + 1) · βmj+1
j

Γ(αj)
· λmj+1 · ρ · C(mj+1)·ρ

ij

· e(mj+1)·
[
x
′
ij ·ξ+

1
2
·(mj+1)·z′ij ·D·zij

]
. (B.9)

Evidently, if censorship applies to some but not all of the times within the vector, then
the integration can be restricted to these, and the corresponding contribution will be an
amalgamation of components taken from (B.8) and (B.9).
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As for the moments, the moments are first derived based upon (B.1):

E(Y k) =

∫ +∞

0

λ · ρ · yρ−1+k · eµ · α · β
(1 + λ · β · yρ · eµ)α+1

· dy

=
α

ϕk/ρ · βk/ρ
·
∫ +∞

1

t−α−1 · (t− 1)k/ρ · dt

=
α

ϕk/ρ · βk/ρ
·
∫ 1

0

zα−1−k/ρ · (1− z)k/ρ · dz

=
α

ϕk/ρ · βk/ρ
·B(α− k/ρ, k/ρ+ 1), (B.10)

where ϕ = λ · eµ, and the integrator transformations t = 1 +λ ·β · yρ · eµ and t = 1/z have
been used. Now, (B.10) can be used as the kth moment, conditional upon bi, as follows:

E(Y k
ij | bi) =

αj

ϕ
k/ρ
ij · β

k/ρ
j

·B(αj − k/ρ, k/ρ+ 1), (B.11)

where ϕij = λ · eµij+z
′
ij ·bi . The unconditional moment follows as:

E(Y k
ij ) =

αj ·B(αj − k/ρ, k/ρ+ 1)

λk/ρ · eµij ·k/ρ · βk/ρj

· 1

(2 · π)q/2· | D |1/2
·
∫
b

e−
1
2
·b′i·D−1·bi− kρ ·z

′
ij ·bi · dbi

=
αj ·B(αj − k/ρ, k/ρ+ 1)

λk/ρ · eµij ·k/ρ · βk/ρj

· e
k2

2·ρ2
·z′ij ·D·zij , (B.12)

where rewriting

−1

2
· b′i ·D−1 · bi −

k

ρ
· zij · bi = −1

2
· (bi − t)

′ ·D−1 · (bi − t) + l,

with

t =
k

ρ
·D · zij, l =

1

2
· k

2

ρ2
· z′ij ·D · zij.

From (B.12), the following moment expression, with mean, variance, and covariance ex-
pressions are immediately derived:

E(Y k
ij ) =

αj ·B(αj − k/ρ, k/ρ+ 1)

λk/ρ · βk/ρj

· e−
k
ρ
·x′ij ·ξ+

k2

2·ρ2
·z′ij ·D·zij , (B.13)

E(Yij) =
αj ·B(αj − 1/ρ, 1/ρ+ 1)

λ1/ρ · β1/ρ
j

· e−
1
ρ
·x′ij ·ξ+

1
2·ρ2
·z′ij ·D·zij , (B.14)

Var(Yij) =
αj

λ2/ρ · β2/ρ
j

· e−
2
ρ
·x′ij ·ξ+

1
ρ2
·z′ij ·D·zij ·

[
B(αj − 2/ρ, 2/ρ+ 1) · e

1
ρ2
·z′ij ·D·zij

−αj ·B
(
αj −

1

ρ
,

1

ρ
+ 1

)2
]
, (B.15)

Cov(Yij, Yik) =
αj · αk

λ2/ρ · β1/ρ
j · β1/ρ

k

· e−
1
ρ
·(x′ij ·ξ+x

′
ik·ξ) ·B

(
αj −

1

ρ
,

1

ρ
+ 1

)
·B
(
αk −

1

ρ
,

1

ρ
+ 1

)
· e

1
2·ρ2
·(z′ij ·D·zij+z

′
ik·D·zik) ·

(
e

1
ρ2
·z′ij ·D·zik − 1

)
. (B.16)
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It is customary, in the standard frailty model (Duchateau and Janssen, 2007), to set
αj ·βj = 1, for identifiability purposes (also suggested in Section 3.2). The change to (B.8)
on the one hand, and to (B.13)–(B.16) is then both evident and minor. Likewise, the
exponential version follows from setting ρ = 1. While Molenberghs and Verbeke (2011)
showed that only a finite number of moments is finite, it is wise to check the number
of finite moments for the WGN model. Using formula (B.13) for the WGN moments,
Molenberghs et al (2014) denoted that the order k ≤ αj · ρ for the corresponding moment
to be finite.

B.2 Regularity Conditions, Consistency and Asymp-

totic Normality of the Pseudo-likelihood Estima-

tor

The logarithm of the pseudo-likelihood (4.11) can be maximized if the density functions

fs(y
(s)
i ; ξ) obtain the following six regularity conditions:

B1 The densities fs(y
(s)
i ; ξ) are distinct for different values of the parameter ξ.

B2 The densities fs(y
(s)
i ; ξ) have common support, which does not depend on ξ.

B3 The parameter space Ω contains an open region ω of which the true parameter value
ξ0 is an interior point.

B4 ω is such that for all s, and almost all y(s) in the support of Y(s), the densities admit
all third derivatives, for j, k, l = 1, . . . , p,

∂3fs(y
(s)
i ; ξ)

∂ξj∂ξk∂ξl
. (B.17)

B5 The first and second logarithmic derivatives of fs satisfy, for k, l = 1, . . . , p,

Eξ

∂ln
[
fs(y

(s)
i ; ξ)

]
∂ξk

 = 0, and 0 < Eξ

−∂
2ln
[
fs(y

(s)
i ; ξ)

]
∂ξk∂ξl

 < +∞.

(B.18)

B6 The matrix I0, defined in (B.20), is positive definite.

B7 There exist functions Mklr such that

∑
s∈S

δs · Eξ

∣∣∣∣∣∣
∂3ln

[
fs(y

(s)
i ; ξ)

]
∂ξk∂ξl∂ξr

∣∣∣∣∣∣ < Mklr(y) (B.19)

for all y in the support of f and for all θ ∈ ω and mklr = Eξ0
(Mklr(Y )) < +∞.

112



Theorem B.2.1, proven by Arnold and Strauss (1991), guarantees the existence of at least
one solution to the pseudo-likelihood equations, which is a consistent and asymptotically
normal estimator. Without loss of generality, assume ξ is constant. Replacing it by ξi,
and modeling it as a function of covariates is straightforward.

Theorem B.2.1. (Consistency and Asymptotic Normality) Assume that (Y1, . . . ,YN)
are i.i.d. with common density that depends on ξ0. Then under regularity conditions
(B1)–(B7):

[1] the pseudo-likelihood estimator ξ̃N , defined as the maximizer of (4.11), converges in
probability to ξ0.

[2]
√
N · (ξ̃N − ξ0) converges in distribution to Np(0, I0(ξ0)−1 · I1(ξ0) · I0(ξ0)−1) with

I0(ξ) defined by

I0,kl(ξ) = −
∑
s∈S

δs · Eξ

∂
2ln
[
fs(y

(s)
i ; ξ)

]
∂ξk∂ξl

 (B.20)

and I1(ξ) by

I1,kl(ξ) =
∑
s,t∈S

δs · δt · Eξ

∂ln
[
fs(y

(s)
i ; ξ)

]
∂ξk

·
∂ln
[
ft(y

(t)
i ; ξ)

]
∂ξl

 . (B.21)

B.3 SAS Macro for the Two-Stage Approach

For providing the SAS macro of Iddi et al (2014), i.e., {proc iml; . . . ; quit;}, in a clear
way, the Asthma dataset (Duchateau and Janssen, 2008) will be used and analyzed here.
The time to recurrence of an asthma attack, denoted by Timeij, is modeled with the
following (random-intercept) WGN model:

Timeij | bi, θij ∼Weibull(ρ, kij), (B.22)

kij = θij · eξ0+ξ1·Ti+bi , (B.23)

bi ∼ N(0, σ2), (B.24)

θij ∼ Gamma(α, 1/α), (B.25)

where Ti = 0 if patient i got a placebo and 1 if patient i got the drug. The corresponding
SAS code is given below:

/∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗
SOFTWARE: SAS 9 . 3 .
OBJECTIVE: Provid ing the SAS macro o f Idd i e t a l (2014) to obta in
EB Gamma f r a i l t y e s t imate s f o r ana lyz ing the Asthma datase t us ing
the WGN model ( 4 . 1 ) − ( 4 . 3 ) , assuming f u l l l i k e l i h o o d with incorpo−
r a t i n g censo r ing ;
DATASET: Example 9 o f Duchateau & Janssen ( 2 0 0 8 ) ;
VARIABLE DESCRIPTION:
Patid : Pat ient ID ;
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Begin and End : time i n t e r v a l between events f o r each pa t i en t ;
Status : Right c enso r ing i n d i c a t o r (1 = Asthma Attack , 0 = Censo−
red ) ;
Drug : Treatment i n d i c a t o r (1 = Drug , 0 = Placebo ) .
REFERENCES: Idd i e t a l (2014) & Molenberghs et a l ( 2 0 1 3 ) .

Thanks g iven to Samuel Idd i & Achmad Efendi , f o r prov id ing r e l e−
vant SAS code .
∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗/
libname asthma ’D:\Mijn Documenten\Master S t a t i s t i e k \Maste r the s i s

\Data ’ ;
l ibname u ’D:\Mijn Documenten\Master S t a t i s t i e k \Maste r the s i s \EB

schat t ing ’ ;

/∗ Weibull−Gamma−Normal model − f u l l l i k e l i h o o d with r i g h t censo−
r i ng ∗/
proc nlmixed data = asthma . asthma1 tech = quanew qpo int s = 50

maxit = 1000 ;
bounds lambda > 0 , alpha > 0 ;
parms Beta 0 = −2 Beta 1 = −0.16 lambda = 1 rho = 1

alpha = 3 .3 sigma = 1 ;
eta = ( Beta 0 + b) + Beta 1 ∗( Drug=1);
expeta = exp ( eta ) ;
c0 = 1/((1 + lambda∗ expeta ∗(Time∗∗ rho )∗ (1/ alpha ))∗∗ alpha ) ;
c1 = log ( lambda ) + log ( rho ) + ( alpha +1)∗ l og ( alpha ) + ( rho

−1)∗ l og (Time) + eta − ( alpha +1)∗ l og ( lambda ∗(Time∗∗
rho )∗ expeta + alpha ) ;

l o g l i k = ( s t a t u s =0)∗ l og ( c0 ) + ( s t a tu s =1)∗c1 ;
model Time ˜ gene ra l ( l o g l i k ) ;
random b ˜ normal (0 , sigma ∗∗2) sub j e c t=Patid out=u . b iwe i ;
e s t imate ’ Variance o f R.E. s ’ sigma ∗∗2 ;

run ;

/∗ I n t e g r a t i o n over t h e t a i j ( Idd i e t al , 2014)∗/
proc iml ;

use asthma . asthma1 ;
read a l l i n to data ;
M = nrow ( data ) ;

s t a r t fxn1 ( theta ) g l o b a l ( alpha , lambda , rho , subdata , i ,
j , b0 , b i ) ;

Drug = subdata [ , 5 ] ;
Time = subdata [ , 7 ] ;
term1 = b0 [ 1 ] + b0 [2]# Drug [ j ] + bi [ i ] ;
kappa = theta#exp ( term1 ) ;
fy = lambda#rho#kappa#Time [ j ]##(rho−1)#exp(−

lambda#Time [ j ]##rho#kappa ) ;
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term = (1/ alpha)##alpha#exp ( lgamma( alpha ) ) ;
f t h e t a = (1/ term)#theta##(alpha−1)#exp(− theta

/(1/ alpha ) ) ;
i n t = fy#f t h e t a ;

r e turn ( i n t ) ;
f i n i s h ;

s t a r t fxn2 ( theta ) g l o b a l ( alpha , lambda , rho , subdata , i ,
j , b0 , b i ) ;

num = fxn1 ( theta ) ;
eps = 1E−10;
l im2 = {0 .P} ;
c a l l quad ( den , ” fxn1 ” , l im2 ) eps=eps s c a l e=1

c y c l e s= 8 msg=”no ” ;
obj = ( theta#num)/ den ;

re turn ( obj ) ;
f i n i s h ;

s t a r t fxn3 ( theta ) g l o b a l ( alpha , lambda , rho , subdata , i ,
j , b0 , bi , x r e s ) ;

num = fxn1 ( theta ) ;
eps = 1E−10;
l im2 = {0 .P} ;
c a l l quad ( den , ” fxn1 ” , l im2 ) eps=eps s c a l e=1

c y c l e s= 8 msg=”no ” ;
obj = ( ( theta−xre s)##2)#num/den ;

re turn ( obj ) ;
f i n i s h ;

/∗ I n t i a l s ∗/
N = 232 ;
use u . b iwe i ;
read a l l i n to b i ;
b i = bi [ , 2 ] ;
ebtheta = repeat ( . , M) ;
ebstd = repeat ( . , M) ;
b0 = {−3.8169 −0.1090 21.6410 0 .249 0 .9356 0 . 8787} ;
p = 0 ;
alpha = b0 [ 3 ] ;
d = b0 [ 4 ] ; /∗ var iance o f random e f f e c t ∗/
lambda = b0 [ 5 ] ;
rho = b0 [ 6 ] ;
do i = 1 to N;

index = t ( l o c ( data [ , 1 ] = i ) ) ;
subdata = data [ index , ] ;
n i = nrow ( subdata ) ;

do j = 1 to n i ;
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p = p + 1 ;
eps = 1E−10;
l im = {0 .P} ;
c a l l quad ( xres , ” fxn2 ” , l im ) eps=

eps s c a l e=1 c y c l e s= 8 msg=
”no ” ;

c a l l quad ( std , ” fxn3 ” , l im ) eps=
eps s c a l e=1 c y c l e s= 8 msg=
”no ” ;

ebtheta [ p ] = xre s ;
ebstd [ p ] = s q r t ( std ) ;
∗end ;

end ;
end ;
out = ebtheta | | ebstd ;
c r e a t e u . mythetacmwei from out [ colname={ ’ e st ’ ’ std ’ } ] ;
append from out ;

qu i t ;

/∗ Pred i c t i on ∗/
data a l l e p i ;

merge asthma . asthma1 u . b iwe i ;
by Patid ;

run ;
data a l l e p i ;

merge a l l e p i u . mythetacmwei ;
run ;

data u . AllResultWei ;
s e t a l l e p i ;
predkappa = e s t ∗exp (−4.1993 − 0 .0887∗ ( Drug=1) + est imate ) ;
keep Patid Drug Time est imate StdErrPred e s t std

predkappa ;
run ;

B.4 The Alternating Imputation Posterior Algorithm

Clayton and Rasbash (1999) suggested a special kind of MCMC algorithm for GLMs
with crossed random effects. This algorithm is based on the imputation posterior (IP)
algorithm of Tanner and Wong (1987), and will be treated in the context of random-effects
models.

Let Y denote the observed data, b present the random effects and the fixed model pa-
rameters are given by ξ. The IP algorithm, which iterates between an ‘imputation’(I)
step and a ‘posterior’(P) step, is similar to Gibbs sampling except that, in the P-step, the
whole parameter vector is sampled from its conditional posterior distribution given the
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random effects, instead of single components. At iterative step (t), the algorithm can be
outlined as follows:

1. I-step: Draw a sample b(t) from the posterior distribution of b, given Y and ξ(t−1);

2. P-step: Draw a sample ξ(t) from the posterior distribution of ξ, given Y and b(t).

As in Gibbs sampling, the algorithm is run until the stationary distribution has been
reached (for a burn-in period), say T . The overall parameter (ξ, b) is estimated by the
mean

(E(ξ | Y); E(b | Y)) =

(
1

T

T∑
t=1

ξ(t);
1

T

T∑
t=1

b(t)

)
. (B.26)

A few comments are in place. First, in the I-step, the usual EB posterior distribution of
the random effects for fixed parameters is used (Skrondal and Rabe-Hesketh, 2009), but
with parameters set equal to ξ(t) instead of the maximum likelihood estimates. Second, in
the P-step, the random effects drawn from the previous iteration step (t− 1) are treated
as fixed offsets. The posterior distribution of the parameters is then approximated by

a multivariate normal distribution with mean equal to the MLE ξ̂
(t)

(treated b(t) as

offsets) and covariance matrix Σ̂(t) derived from the Hessian. This approximate ‘sampling
distribution’approximates the true Bayesian posterior if uniform priors are assumed for
all parameters ξ. Using Rao-Blackwellization (Gelfand and Smith, 1990), the variance of
the parameter estimates ξ is then estimated by

1

T

T∑
t=1

Σ̂(t) +
1

T

T∑
t=1

(ξ − E(ξ | Y)) · (ξ − E(ξ | Y))
′
, (B.27)

Clayton and Rasbash (1999) argue that ideally, the P-step should consist of two parts: (1)
use restricted maximum likelihood (Bartlett, 1937) to obtain an approximate posterior
for the variance and covariance parameters and draw sample from this posterior and (2)
approximate the posterior of the fixed parameters by a multivariate normal distribution
with mean and variance from the ML solution setting the variance parameters equal to
the draws from (1).

Unlike MCMC, the AIP algorithm does not require specification of prior distributions
for the model parameters. Furthermore, the algorithm typically converges much more
rapidly because the model parameters are updated simultaneously. As pointed out by
Clayton and Rasbash (1999), this algorithm also requires many fewer draws than a Gibbs
sampler based on scalar nodes to estimate posteriors accurately. The reason for this
is that characteristics of the joint posterior distribution can be estimated using Rao-
Blackwellization.

117



Chapter C

Supplementary Material for Chapter
5

C.1 SAS code for implementing the MMM of the

WGN model

/∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗
SOFTWARE: SAS 9 . 3 .
OBJECTIVE: Implementation o f the MMM f o r WGN model (B.22)−(B. 2 5 )
f o r ana lyz ing the Asthma datase t with f u l l l i k e l i h o o d with
i n c o r p o r a t i n g censo r ing ;
DATASET: Example 9 o f Duchateau & Janssen ( 2 0 0 8 ) ;
VARIABLE DESCRIPTION:
Patid : Pat ient ID ;
Begin and End : time i n t e r v a l between events f o r each pa t i en t ;
Status : Right c enso r ing i n d i c a t o r (1 = Asthma Attack , 0 = Censo−
red ) ;
Drug : Treatment i n d i c a t o r (1 = Drug , 0 = Placebo ) .
REFERENCE: Efendi , Molenberghs and Idd i ( 2 0 1 3 ) .
∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗/
/∗ Weibull−Gamma−Normal model − f u l l l i k e l i h o o d with r i g h t censo−
r i ng − MMM∗/
proc nlmixed data = asthma . asthma1 tech = quanew qpo int s = 50

maxit = 1000 ;
bounds lambda > 0 , alpha > 0 ;
parms Beta 0 = −2 Beta 1 = −0.16 lambda = 1 rho = 1

alpha = 3 .3 sigma = 1 ;
eta = ( Beta 0 + b) + Beta 1 ∗( Drug=1) − sigma /2 ;
expeta = exp ( eta ) ;
c0 = 1/((1 + lambda∗ expeta ∗(Time∗∗ rho )∗ (1/ alpha ))∗∗ alpha ) ;
c1 = log ( lambda ) + log ( rho ) + ( alpha +1)∗ l og ( alpha ) + ( rho

−1)∗ l og (Time) + eta − ( alpha +1)∗ l og ( lambda ∗(Time∗∗
rho )∗ expeta + alpha ) ;

l o g l i k = ( s t a t u s =0)∗ l og ( c0 ) + ( s t a tu s =1)∗c1 ;
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model Time ˜ gene ra l ( l o g l i k ) ;
random b ˜ normal (0 , sigma ∗∗2) sub j e c t=Patid ;
e s t imate ’ Variance o f R.E. s ’ sigma ∗∗2 ;

run ;
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Chapter D

Supplementary Material for Chapter
6

D.1 Derivation of the Joint Marginal Density

D.1.1 Case 1: Longitudinal Continous and Repeated Time-to-
Event Data

Consider the conditional joint distribution given by (6.6). Integrating over the normal
random effects, by using the expansion

e−λ·t
ρ
ik·θik·e

x
′
ik·ξ1+w

′
ik·bi =

+∞∑
mk=0

(−1)mk

mk!
· λmk · tmj ·ρik · θmkik · e

mk·(x
′
ik·ξ1+w

′
ik·bi) (D.1)

and rewrite the expression [yi − (Xi · ξ2 + Zi · bi)]
′ · Σ−1

i · [yi − (Xi · ξ2 + Zi · bi)] by

(yi −Xi · ξ2)
′ · Σ−1

i · (yi −Xi · ξ2)− 2 · (yi −Xi · ξ2)
′ · Σ−1

i · (Zi · bi) + b
′

i · Z
′

i · Σ−1
i · Zi · bi,

(D.2)

and
∑pi

k=1(mk+1)·w′ik ·bi−2·(yi−Xi ·ξ2)
′ ·Σ−1

i ·(Zi ·bi)− 1
2
·b′i ·[(D−1+Z

′
i ·Σ−1

i ·Zi)−1]−1 ·bi
by

−1

2
· (bi −K)

′ · [(D−1 + Z
′

i · Σ−1
i · Zi)−1]−1 · (bi −K) + L, (D.3)

with

K = (D−1 + Z
′

i · Σ−1
i · Zi)−1 · S ′ , L =

1

2
· S · (D−1 + Z

′

i · Σ−1
i · Zi)−1 · S ′ ,

S =

pi∑
k=1

(mk + 1) ·w′ik − 2 · (yi −Xi · ξ2)
′ · Σ−1

i · Zi,
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the joint distribution, conditional on the gamma random effects, takes the form:

f(yi, ti | θi) =
1

(2 · π)ni/2· | Σ−1
i |1/2

· e−
1
2
·(yi−Xi·ξ2)

′ ·Σ−1
i ·(yi−Xi·ξ2) ·

∑
(l1,...,lpi )

{
(−1)

∑pi
k=1 lk∏pi

k=1 lk!

·e
∑pi
k=1(lk+1)·x′ik·ξ1 ·

(
pi∏
k=1

θlk+1
ik λlk+1 · ρ · tρ·lk+ρ−1

ik

)
· alk

}
· 1

| D |1/2

· | (D−1 + Z
′

i · Σ−1
i · Zi)−1 |1/2, (D.4)

where

alk = e
1
2
·
[∑pi

k=1(lk+1)·w′ik−2·(yi−Xi·ξ2)
′ ·Σ−1

i ·Zi
]
·
(
D−1+Z

′
i ·Σi·Zi

)−1
·
[∑pi

k=1(lk+1)·w′ik−2·(yi−Xi·ξ2)
′ ·Σ−1

i ·Zi
]′
.

Knowing that

blk ≡
∫
θ

pi∏
k=1

1

βα · Γ(α)
· θlk+α

ik · e
θik
β · dθik =

[
βlk−1 · (lk + α) · (lk + α− 1) · . . . · α

]pi
,

(D.5)

the joint distribution, i.e., by integrating out the Gamma random effects in (D.4), follows
to be

f(yi, ti) =
1

(2 · π)ni/2· | Σ−1
i |1/2

· e−
1
2
·(yi−Xi·ξ2)

′ ·Σ−1
i ·(yi−Xi·ξ2) ·

∑
(l1,...,lpi )

{
(−1)

∑pi
k=1 lk∏pi

k=1 lk!

·e
∑pi
k=1(lk+1)·x′ik·ξ1 ·

(
pi∏
k=1

λlk+1 · ρ · tρ·lk+ρ−1
ik

)
· alk · blk

}
· 1

| D |1/2

· | (D−1 + Z
′

i · Σ−1
i · Zi)−1 |1/2 . (D.6)

D.1.2 Case 2: Repeated Binary Outcomes and Repeated Time-
to-Event Data

Consider the conditional joint distribution given by (6.15). Specifically, assume that
the binary outcome repeatedly measures 1 (similar derivations can be made for other
specifications). By using expansion (D.1), denoting Kij by∫ x

′
ij ·ξ2

−∞

1√
2 · π

· e−
1
2
·(s+z

′
ij ·bi)2 · ds (D.7)

and write the expression b
′
i ·D−1 · bi + (s+ z

′
ij · bi)2 − 2 ·

∑pi
k=1(lk + 1) · w′ik · bi by

(bi −K)
′ · [(D−1 + zij · z

′

ij)
−1]−1 · (bi −K) + L, (D.8)

with

K = −(D−1 + zij · z
′

ij)
−1 ·

[
zij · s−

pi∑
k=1

(lk + 1) · wik

]
,

L = s2 −

[
zij · s−

pi∑
k=1

(lk + 1) · wik

]′
· (D−1 + zij · z

′

ij)
−1 ·

[
zij · s−

pi∑
k=1

(lk + 1) · wik

]
,
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the integration of the normal random effects can be rewritten by

1

| D |1/2
·
(

α1

α1 + β1

)ni
·

+∞∑
lk=0

(−1)
∑pi
k=1 lk∏pi

k=1 lk!
·

(
pi∏
k=1

θlk+1
ik

)
· e
∑pi
k=1(lk+1)·x′ik·ξ2

·
pi∏
k=1

λlk+1 · ρ · tρ·lk+ρ−1
ik ·

ni∏
j=1

1

| D−1 + zij · z
′
ij |

1
2

·
∫ x

′
ij ·ξ2

−∞

1√
2 · π

· e−
1
2
·L · ds︸ ︷︷ ︸

(∗)

. (D.9)

With the use of a ’completion-of-squares’ approach (Wrestler, 1989) and by applying the
substitution

u = (s+
m2

2 ·m1

) ·m
1
2
1 , (D.10)

with

m1 = 1− z
′

ij · (D−1 + zij · z
′

ij)
−1 · zij,

m2 = z
′

ij · (D−1 + zij · z
′

ij)
−1 ·

pi∑
k=1

(lk + 1) · wik +

[
pi∑
k=1

(lk + 1) · wik

]′
· (D−1 + zij · z

′

ij)
−1 · zij,

expression (∗) can easily be expressed by

m
− 1

2
1 · e

1
2
·
(

m2
2

4·m1
+n1

)
· Φ
(
m

1
2
1 · x

′

ij · ξ2 +
m2

2
·m−

1
2

1

)
,

with

n1 =

[
pi∑
k=1

(lk + 1) · wik

]′
· (D−1 + zij · z

′

ij)
−1 ·

[
pi∑
k=1

(lk + 1) · wik

]
.

Knowing that (D.5) holds, the joint distribution follows to be

f(yi = 1, ti) = m
− 1

2
1 · e

1
2
·
(

m2
2

4·m1
+n1

)
· 1

| D |1/2
·
(

α1

α1 + β1

)ni
·

+∞∑
lk=0

(−1)
∑pi
k=1 lk∏pi

k=1 lk!

·e
∑pi
k=1(lk+1)·x′ik·ξ2 ·

ni∏
j=1

1

| D−1 + zij · z
′
ij |

1
2

·
pi∏
k=1

λlk+1 · ρ · tρ·lk+ρ−1
ik

·
[
βlk−1 · (lk + α) · (lk + α− 1) · . . . · α

]pi
.

(D.11)

Wrestler, F. E. 1989. Hindu Algebra. In Historical Topics for the Mathematics Classroom;
Second edition, edited by John K. Baumgart 1989. Reston: NCTM
Learning and Teaching Mathematics, No.2 Page 7 A Geometrical Introduction to the
Method of Completing the Square Anesh Maharaj School of Math. and Statistical Sci-
ences, University of KwaZulu-Natal
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D.2 Derivation of the Correlation Between Both End-

points and Intraclass Correlation

D.2.1 Case 3: Bivariate, Repeated Time-to-Event Data

Let Y1ij and Y2ij be the jth measurement of cluster (subject) i for time-to-event outcome
1 and 2 respectively. The linear part for the two responses are:

η1ij = ∆1ij + z
′

1ij · b1i,

η2ij = ∆2ij + z
′

2ij · b2i,

with

∆1ij = −log(α1j · β1j) + x
′

1ijξ
m
1 −

z
′
1ij ·D11 · z1ij

2
,

∆2ij = −log(α2j · β2j) + x
′

2ijξ
m
2 −

z
′
2ij ·D22 · z2ij

2
,[

b1i

b2i

]
∼ N

([
0
0

]
,

[
D11 D12

D12 D22

])
For simplicity, the random-intercept approach is chosen, where censoring is not present in
both outcomes. The bivariate normal distribution (6.24) is used for derivations. At last,
αv · βv = 1 is assumed for reasons of identifiability (v = 1, 2).

1. Derivation of the correlation between both endpoints

The correlation between the two outcomes is, by definition:

Corr(Y1ij, Y2ij) =
Cov(Y1ij, Y2ij)√

Var(Y1ij) ·
√

Var(Y2ij)
. (D.12)

Knowing that

Cov(Y1ij, Y2ij) = E[Cov(Y1ij, Y2ij | b1i, b2i)] + Cov[E(Y1ij | b1i, b2i),E(Y2ij | b1i, b2i)].

and the fact that Cov(Y1ij, Y2ij | b1i, b2i) = 0, expression (D.12) can easily be re-
written by

Corr(Y1ij, Y2ij) =
Cov[E(Y1ij | b1i),E(Y2ij | b2i)]√

Var(Y1ij) ·
√

Var(Y2ij)
. (D.13)

By integrating the gamma random effect, it can easily be shown, for v = 1, 2, that

f(yvij | bvi) =
λv · e∆vij+bvi · ρv · yρv−1

vij · ααv+1
v

(αv + λv · yρvvij · e∆vij+bvi)αv+1
. (D.14)
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Therefore, the conditional expectation for outcome v = 1, 2 is given by

E(Yvij | bvi) =

∫ +∞

0

yvij · f(yvij | bvi) · dyvij =
α

1/ρv
v ·B

(
αv − 1

ρv
, 1
ρv

)
ρv · (λv · e∆vij+bvi)1/ρv

.

(D.15)

Using formula (D.15), the covariance between E(Y1ij | b1i) and E(Y2ij | b2i), i.e., the
numerator of (D.13), can easily be formulated to

Cov[E(Y1ij | b1i),E(Y2ij | b2i)] =
α

1/ρ1

1 · α1/ρ2

2 ·B
(
α1 − 1

ρ1
, 1
ρ1

)
·B
(
α2 − 1

ρ2
, 1
ρ2

)
ρ1 · (λ1 · e∆1ij)1/ρ1 · ρ2 · (λ2 · e∆2ij)1/ρ2

· Cov
(
e−b1i/ρ1 , e−b2i/ρ2

)
=
α

1/ρ1

1 · α1/ρ2

2 ·B
(
α1 − 1

ρ1
, 1
ρ1

)
·B
(
α2 − 1

ρ2
, 1
ρ2

)
ρ1 · (λ1 · e∆1ij)1/ρ1 · ρ2 · (λ2 · e∆2ij)1/ρ2

·
(
e
r·d1·d2
ρ1·ρ2 − 1

)
· e

1
2
·
(
d21
ρ21

+
d22
ρ22

)
. (D.16)

In addition, the variance of Yvij, for v = 1, 2, equals to

Var(Yvij) =

α
1/ρv
v · ed2

v/ρ
2
v ·
[
B
(
αv − 2

ρv
, 2
ρv

)
· ed2

v/ρ
2
v −B

(
αv − 2

ρv
, 2
ρv

)2
]

ρv · (λv · e∆vij)1/ρv
. (D.17)

Imputing (D.16) and (D.17) in (D.13) gives formula (6.26) for the correlation be-
tween the two outcomes.

2. Derivation of the intraclass correlation

By definition, the correlation between the jth and kth measurements of cluster
(subject) i for outcome v (v = 1, 2) is

Corr(Yvij, Yvik) =
Cov(Yvij, Yvik)√

Var(Yvij) ·
√

Var(Yvik)
. (D.18)

Given that the random effect between the measurements are independent, i.e., where
Cov(Yvij, Yvik | bvi) = 0 holds, for v = 1, 2, formula (D.18) can simply be rewritten
by

Corr(Yvij, Yvik) =
Cov[E(Yvij | bvi),E(Yvik | bvi)]√

Var(Yvij) ·
√

Var(Yvik)
. (D.19)
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From formula (D.15), the numerator of (D.19) can be expressed by

Cov[E(Yvij | bvi),E(Yvik | bvi)] =
α

2/ρv
v ·B

(
αv − 1

ρv
, 1
ρv

)2

ρ2
v · (λ2

v · e∆vij+∆vik)1/ρv
·
(
ed

2
v/ρ

2
v − 1

)
· ed2

v/ρ
2
v .

(D.20)

By imputing expressions (D.17) and (D.20) in (D.19), formula (6.25) is achieved
for the intraclass correlation.
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Chapter E

Supplementary Material for Chapter
8

E.1 Derivation to achieve the proportional relation-

ship between the directional derivative of the

log-likelihood `(·) at G into the direction H and

the gradient function ∆(G,b)

In order to achieve the proportional relationship between the directional derivative of
the log-likelihood `(·) at G into the direction H and the gradient function ∆(G,b), the
following explicit derivations have been made by Verbeke and Molenberghs (2013):

Φ(G,H) =
∂
∑N

i=1 ln[(1− α) · fi(yi | G) + α · fi(yi | H)]

∂α

∣∣∣∣
α=0

=
N∑
i=1

fi(yi | H)− fi(yi | G)

fi(yi | G)

=
N∑
i=1

fi(yi | H)

fi(yi | G)
−N

=
N∑
i=1

∫
b
fi(yi | b) · dH(b)

fi(yi | G)
−N

= N ·
∫
b

1

N
·
N∑
i=1

fi(yi | b)

fi(yi | G)
· dH(b)−N

= N ·
[∫

b

∆(G,b) · dH(b)− 1

]
∝
∫
b

∆(G,b) · dH(b)− 1. (E.1)
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Chapter F

Supplementary Material for Chapter
9

Lesaffre and Verbeke (1998) introduced an influence assessment paradigm for the linear
mixed model, by following the approach of local influence proposed by Cook (1986). Their
developments will be presented here (Section F.1.1). Additionally, Rakhmawati et al
(2014) derived an alternative derivation on the likelihood in integral form (Section F.1.2).
This paradigm is used as starting point in the developments of Rakhmawati et al (2014)
influence assessment paradigm for the combined model of Section 3.4. Special attention
is given on the local influence for the Weibull-normal model (Section F.2). Derivations
for other models were made as well, and can be found in Rakhmawati et al (2014).
Cook 1986, Journal of the Royal Statistical Society, Series B 48, 133-169)

F.1 Local Influence for the Linear Mixed Model

F.1.1 Standard approach, based on the Marginal Likelihood

To stay in line with Lesaffre and Verbeke (1998), the marginal linear mixed model (3.24)
is considered, with conditional independence assumption Σi = σ2 · Ini . Here, Ini denotes
the ni x ni identity matrix.

For Ci as in formula (9.7), a convenient form can be derived:

Ci = −2 ·
(
θ̂ − θ̂

1

(i)

)′
· L̈(i) · L̈−1 · L̈(i) ·

(
θ̂ − θ̂

1

(i)

)
, (F.1)

where a subscript (i) indicates that the corresponding quantity is based on the deletion of

the ith subject and further the vector θ̂
1

(i) is the one-step approximation to θ̂(i) obtained

from a single Newton-Raphson step in the maximization procedure of l(i)(θ), using θ̂ as
the starting value. For sufficiently large sample size, it follows that Ci is an approximation
to the classical global case-deletion diagnostics. Note that the expression is exact when
properly used for local influence purposes.

It is advantageous that Ci admits a closed form (9.7). Lesaffre and Verbeke (1998) de-
composed Ci into five interpretable components. Let Ri, Xi, and Zi denote the ”stan-
dardized” residuals and covariates for the ith individual, defined by Ri = V

−1/2
i · ri,
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Xi = V
−1/2
i · Xi, and Zi = V

−1/2
i · Zi, respectively, with ri = yi − Xi · β̂. Further, for

a matrix A, let ‖A‖ =
√

tr(A′ · A) be the Frobenius norm of A (Golub and Van Loan,
1989). The interpretable components in Ci are then

‖Xi · X
′

i ‖, ‖Ri‖, ‖Zi · Z
′

i‖, ‖I −Ri ·R
′

i‖, ‖V −1
i ‖. (F.2)

First, ‖Xi · X
′
i ‖ measures the length of the standardized covariates in the mean structure

and ‖Ri‖ is an overall measure for how well the observed data for the ith subject are

predicted by the mean structure Xi ·β̂. Second, the components ‖Zi ·Z
′
i‖ and ‖I−Ri ·R

′

i‖
have a similar meaning, but then for the covariance structure. For example, ‖I−Ri ·R

′

i‖
will be zero only if Vi equals ri · r

′
i. Note that ri · r

′
i is an estimate for Var(yi), which

only assumes the mean to be correctly modeled as Xi · β. Therefore, ‖I −Ri ·R
′

i‖ can
be interpreted as a residual, capturing how well the covariance structure of the data is
modeled by Vi = Zi · D · Z

′
i + σ2 · Ini . Finally, the fifth component ‖V −1

i ‖ will be large
if Vi has small eigenvalues, which indicates that the ith subject is assumed to have small
variability.

The decomposition of Ci immediately suggests a practical procedure to find an expla-
nation for the influential nature of an individual, i.e., when Ci is large, we examine the
diagnostics. Such plots are useful to graphically inspect the individuals in view of their
influential nature. Thus, it is sensible to start with an index plot of Ci. Following this,
the index plots of (F.2) can be examined. A recurrent practical difficulty with diagnostics
is to establish a threshold above which an individual is defined as remarkable. It follows
from (9.7) that

N∑
i=1

Ci = −2 · tr

(
L̈−1 ·

N∑
i=1

∆i ·∆
′

i

)
, (F.3)

which converges to 2 · s, for N approaching infinity. As for leverage in linear regression
(Neter, Wasserman and Kutner 1990, pp. 395-396), one could classify an individual for
which Ci is larger than twice the average value (larger than 4 · s/N , for N large) as being
influential. However, unlike for the leverage situation, 2 · s is only the approximate sum
of the Ci, which will not be accurate if the model is not correctly specified (such that
L̈−1 ·

∑N
i=1 ∆i ·∆

′
i does not converge to Is) or if N is too small for the asymptotic results

to yield good approximations. In such cases, Lesaffre and Verbeke (1998) proposed to
replace 2 · s by the actual sum, and we call the ith subject influential if Ci is larger than
the cutoff value 2 ·

∑N
i=1Ci/N .

Given decomposition result (F.2), it is interesting to consider sub-vectors β and α of fixed
effects and variance components, respectively, with corresponding influences Ci(β) and
Ci(α), respectively. Given that the fixed effects and variance components are asymptoti-
cally independent, it follows that

Ci ≈ Ci(β) + Ci(α). (F.4)

Lesaffre and Verbeke (1998) further showed that Ci(β) can be decomposed using only
the first two components ‖Xi · X

′
i ‖ and ‖Ri‖, while the last three components ‖Zi · Z

′
i‖,

‖I−Ri ·R
′

i‖ and ‖V −1
i ‖ feature in the decomposition of Ci(α). Asymptotically therefore,

influence for the fixed effects and for the variance components can be scrutinized by
studying the first two and the last three interpretable components, respectively.
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F.1.2 Integral-based expression

As previewed in Section 4, the integral-based approach is used here as an alternative way
to alleviate complexities with the explicit marginal likelihood expressions. To prepare for
developments of Poisson, probit, logit and Weibull cases, we set out this way for the linear
mixed model.

The marginal density corresponding to the linear mixed model is defined by the following
expression:

f̃(yi) =

∫
f̃(yi | β,bi) · f̃(bi | D) · dbi. (F.5)

The conditional density of the response variable takes the form:

f̃(yi | β,bi) =

(
1

2 · π · σ2

)ni/2
· exp

[
− 1

2 · σ2
· (yi −Xi · β − Zi · bi)

′ · (yi −Xi · β − Zi · bi)
]

= (2 · π · s)−ni/2 · exp [f(yi)] , (F.6)

where f(yi) = −(2 · s)−1 · (yi − ŷi)
′ · (yi − ŷi), ŷi = Xi · β + Zi · bi and s = σ2. The

conditional density of the normal random effect is:

f(bi) =
1

(2 · π)q/2· | D |1/2
· e−

1
2
·b′i·D−1·bi = (2 · π)−q/2· | D |−1/2 ·exp [g(bi)] , (F.7)

where g(bi) = −1
2
·b′i ·D−1 ·bi. Thus, the marginal density for the linear mixed model is:

f̃(yi) = (2 · π)−(ni+q)/2 · s−ni/2· | D |−1/2 ·
∫

exp [f(yi) + g(bi)] · dbi. (F.8)

From (F.8) the likelihood derives as:

L(β, D, s) =
N∏
i=1

f̃(yi), (F.9)

and the corresponding log-likelihood is (9.1). Thus, the log-likelihood contribution of the
ith individual takes the form:

li(β, D, s) = log{(2 · π)−(ni+q)/2 · s−ni/2· | D |−1/2 ·
∫

exp [f(yi) + g(bi)] · dbi}

= −ni + q

2
· log(2 · π)− ni

2
· log(s)− 1

2
· log | D | +log{

∫
exp [f(yi) + g(bi)] · dbi}

∝ −ni
2
· log(s)− 1

2
· log | D | +logKi, (F.10)

where Ki =
∫
Ii · dbi and Ii = exp [f(yi) + g(bi)].

To derive the local influence as described in (9.7), the components of local influence need
to be derived. Lesaffre and Verbeke (1998) showed that Ci equals:

Ci = 2 · ‖L̈−1‖ · ‖∆i‖2 · cos(ϕi), (F.11)
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where ϕi is the angle between vec(−L̈−1) and vec(∆i · ∆
′
i), ∆i is the first derivative of

li(β, D, s) with respect to the model parameters, and L̈−1 is the s?s matrix of second
derivatives of l(β, D, s) with respect to the parameters.

The procedure to construct derivatives with respect to the parameters is as follows. First,
the derivative with respect to fixed effect β is:

∂li(β, D, s)

∂β
=

1

Ki

·
∫
Ii ·

1

s
·X′

i · (yi − ŷi) · dβ =
1

s
·X′

i ·
Li

Ki

, (F.12)

where

Ki =

∫
Ii · dbi =

∫
exp [f(yi) + g(bi)] · dbi = c · φ̃(yi) (F.13)

and

Li =

∫
Ii · (yi − ŷi) · dbi

=

∫
Ii · (yi −Xi · β − Zi · bi) · dbi

= yi ·
∫
Ii · dbi −Xi · β ·

∫
Ii · dbi + Zi ·

∫
Ii · bi · dbi (F.14)

Component
∫
Ii · bi · dbi of Li can be rewritten as:∫

Ii · bi · dbi =

∫
c · φ̃(yi,bi) · bi · dbi

= c ·
∫
φ̃(yi) · φ̃(bi | yi) · bi · dbi

= c · φ̃(yi) ·
∫

bi · φ̃(bi | yi) · dbi

= c · φ̃(yi) · E(bi | yi)
= c · φ̃(yi) ·D · Z

′

i ·V
′

i · (yi −Xi · β)

= c · φ̃(yi) ·D · Z
′

i ·V
′

i · ri, (F.15)

where ri = yi −Xi · β. Expanding the component functions of (F.12) leads to:

∂li(β, D, s)

∂β
=

1

s
·X′

i ·
Li

Ki

=
1

s
·X′

i ·
[
yi −Xi · β − Zi ·D · Z

′

i ·V−1
i · (yi −Xi · β)

]
=

1

s
·X′

i ·
[
(Ini − Zi ·D · Z

′

i ·V−1
i ) · (yi −Xi · β)

]
=

1

s
·X′

i ·
{[

(s+ Zi ·D · Z
′

i) ·V−1
i − Zi ·D · Z

′

i ·V−1
i

]
· (yi −Xi · β)

}
=

1

s
·X′

i · s ·V−1
i · (yi −Xi · β)

= X
′

i ·V−1
i · ri. (F.16)
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Second, the derivative with respect to s ≡ σ2 is as follows:

∂li(β, D, s)

∂s
= −ni

s
+

1

Ki

·
∫
Ii ·

1

2 · s2
· (yi − ŷi)

′ · (yi − ŷi) · dbi

= −ni
s
− 1

s ·Ki

·
∫
Ii · f(yi) · dbi

= −1

s
·
[
ni
2

+
1

Ki

·
∫
Ii · f(yi) · dbi

]
, (F.17)

where Ki is given in (F.13). The component
∫
Ii · f(yi) · dbi can be rewritten as:∫

Ii · f(yi) · dbi = − 1

2 · s
·
∫
Ii · (yi −Xi · β − Zi · bi)

′ · (yi −Xi · β − Zi · bi) · dbi

= − 1

2 · s
·
∫
Ii · (ri − Zi · bi)

′ · (ri − Zi · bi) · dbi

= − 1

2 · s
·
(

r
′

i · ri ·
∫
Ii · dbi − r

′

i · Zi ·
∫

bi · Ii · dbi
)

− 1

2 · s
·

[
−
(∫

bi · Ii · dbi
)′
· Z′i · ri +

∫
b
′

i · Z
′

i · Zi · bi · Ii · dbi

]
= − 1

2 · s
· c · φ̃(yi) ·

[
r
′

i · ri − r
′

i · Zi · E(bi | yi)
]

− 1

2 · s
· c · φ̃(yi) ·

{
− [E(bi | yi)]

′
· Z′i · ri + E(b

′

i · Z
′

i · Zi · bi)
}
,

(F.18)

where E(bi | yi) = D · Z′i ·V−1
i · ri and

E(b
′

i · Z
′

i · Zi · bi) = tr
[
Zi · Var(bi | yi) · Z

′

i

]
+ E(bi | yi)

′ · Z′i · Zi · E(bi | yi)

= tr
[
Zi · (Z

′

i · s−1 · Zi +D−1)−1
]

+ r
′

i ·V−1
i · Zi ·D

′ · Z′i · Zi ·D · Z
′

i ·V−1
i · ri

= tr
{

Zi ·
[
D −D · Z′i · (s+ Zi ·D · Z

′

i)
−1 · Zi ·D

]
· Z′i
}

+ r
′

i ·V−1
i · Zi ·D

′ · Z′i · Zi ·D · Z
′

i ·V−1
i · ri

= tr
[
Zi ·D · Z

′

i + (Ini −V−1
i · Zi ·D · Z

′

i)
]

+ r
′

i ·V−1
i · Zi ·D

′ · Z′i · Zi ·D · Z
′

i ·V−1
i · ri

= tr(Zi ·D · Z
′

i ·V−1
i · s) + r

′

i ·V−1
i · Zi ·D

′ · Z′i · Zi ·D · Z
′

i ·V−1
i · ri

= tr
[
(Vi − s) ·V−1

i · s
]

+ r
′

i ·V−1
i · Zi ·D

′ · Z′i · Zi ·D · Z
′

i ·V−1
i · ri

=
[
ni · s− s2 · tr(V−1

i )
]

+ r
′

i ·V−1
i · Zi ·D

′ · Z′i · Zi ·D · Z
′

i ·V−1
i · ri.

(F.19)
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Thus, (F.18) simplifies to:∫
Ii · f(yi) · dbi = − 1

2 · s
· c · φ̃(yi) ·

[
r
′

i · (Ini − Zi ·D · Z
′

i ·V−1
i −V−1

i · Zi ·D · Z
′

i) · ri
]

− 1

2 · s
· c · φ̃(yi) ·

[
r
′

i ·V−1
i · Zi ·D

′ · Z′i · Zi ·D · Z
′

i ·V−1
i · ri + ni · s

−s2 · tr(V−1
i )
]

= − 1

2 · s
· c · φ̃(yi) ·

{
r
′

i ·
[
(Ini −V−1

i · Zi ·D · Z
′

i)

·(Ini −V−1
i · Zi ·D · Z

′

i)
′
]
· ri
}
− 1

2 · s
· c · φ̃(yi) ·

[
ni · s− s2 · tr(V−1

i )
]

= − 1

2 · s
· c · φ̃(yi) ·

{
r
′

i ·Mi ·M
′

i · ri +
[
ni · s− s2 · tr(V−1

i )
]}

= − 1

2 · s
· c · φ̃(yi) ·

[
r
′

i ·V−1
i · s · s ·V−1

i · ri + ni · s− s2 · tr(V−1
i )
]
,

(F.20)

where Mi = V−1
i · (s+ Zi ·D · Z

′
i)−V−1

i · Zi ·D · Z
′
i.

Expanding the components of (F.17) leads to:

∂li(β, D, s)

∂s
= −1

s
·
[
ni
2

+
1

Ki

·
∫
Ii · f(yi) · dbi

]
= − ni

2 · s
+

1

2
· r′i ·V−1

i ·V−1
i · ri +

ni
2 · s
− 1

2
· tr(V−1

i )

= −1

2
·
[
tr(V−1

i )− r
′

i ·V−1
i ·V−1

i · ri
]
. (F.21)

Third, the derivative with respect to D is:

∂li(β, D, s)

∂djk
= −1

2
· (2− δjk) · (D−1)jk +

1

Ki

·
∫
Ii ·

∂g(bi)

∂djk
· dbi

= −1

2
· (2− δjk) · (D−1)jk +

1

2 ·Ki

·
∫
Ii · b

′

i ·D−1 · Ejk ·D−1 · bi · dbi.

(F.22)

where djk is the (j, k) element of D, and Eij is a matrix of zeros everywhere except a one
in entries (j, k) and (k, j). The integral part of the first derivative with respect to D can
be written as:∫

Ii · b
′

i ·D−1 · Ejk ·D−1 · bi · dbi = c · φ̃(yi) ·
∫

b
′

i ·D−1 · Ejk ·D−1 · bi · φ̃(bi | yi) · db

= c · φ̃(yi) · E(b
′

i ·D−1 · Ejk ·D−1 · bi | yi), (F.23)
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where

E(b
′

i ·D−1 · Ejk ·D−1 · bi | yi) = E
[
tr(b

′

i ·D−1 · Ejk ·D−1 · bi)
]

= tr
{[
D−1 · Ejk ·D−1 · E(b

′

i · bi | yi)
]}

= tr
{
D−1 · Ejk ·D−1 ·

[
Var(bi | yi) + E(bi | yi)

′ · E(bi | yi)
]}

= tr
[
D−1 · Ejk ·D−1 · Var(bi | yi)

]
+ E(bi | yi)

′ ·D−1 · Ejk ·D−1 · E(bi | yi)

= tr
{
D−1 · Ejk ·D−1 ·

[
D −D · Z′i · (s+ Zi ·D · Z

′

i)
−1 · Zi ·D

]}
+ r

′

i ·V−1 · Z(j)
i · Z

(k)
′

i · Z′i ·V−1 · ri
= tr

[
D−1 · Ejk ·D−1 · (D −D · Z′i ·V−1 · Zi ·D)

]
+ (2− δjk) · r

′

i ·V−1 · Z(j)
i · Z

(k)
′

i · Z′i ·V−1 · ri
= tr(D−1 · Ejk)− tr(Ejk · Z

′

i ·V−1 · Zi ·D)

+ (2− δjk) · r
′

i ·V−1 · Z(j)
i · Z

(k)
′

i · Z′i ·V−1 · ri

= (2− δjk) · (D−1)jk − (2− δjk) · Z(j)
′

i ·V−1 · Z(k)
i

+ (2− δjk) · r
′

i ·V−1 · Z(j)
i · Z

(k)
′

i · Z′i ·V−1 · ri

= (2− δjk) ·
[
(D−1)jk − Z

(j)
′

i ·V−1 · Z(k)
i + r

′

i ·V−1 · Z(j)
i

·Z(k)
′

i · Z′i ·V−1 · ri
]
. (F.24)

Expanding the components of (F.22) leads to:

∂li(β, D, s)

∂djk
= −1

2
· (2− δjk) · (Z(j)

′

i ·V−1 · Z(k)
i − r

′

i ·V−1 · Z(j)
i · Z

(k)
′

i · Z′i ·V−1 · ri).

(F.25)

This integral-based result, based on (F.16), (F.21), and (F.25) is identical to the standard
one of Lesaffre and Verbeke (1998). Hence also, the same interpretable components as in
(F.2) ensue.
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F.2 Local Influence for the Weibull-normal Model

The general Weibull model for repeated measurement data as described in (9.14)–(9.15)
can be re-expressed as:

f(yi | θi,bi) =

ni∏
j=1

λ · ρ · yρ−1
ij · exp(µij) · exp

[
−λ · yρij · exp(µij)

]
= λ · ρ ·

(
ni∏
j=1

yρ−1
ij

)
· exp

{
ni∑
j=1

[
µij − λ · y

ρ
ij · exp(µij)

]}

= λ · ρ ·

(
ni∏
j=1

yρ−1
ij

)
· exp

[
f̃(yi)

]
, (F.26)

where µij = x
′
ij ·ξ+z

′
ij ·bi and f̃(yi) =

∑ni
j=1

[
µij − λ · y

ρ
ij · exp(µij)

]
. Thus, the marginal

density of the Weibull-model takes the following form:

f(yi) =

∫
f(yi | β,bi) · f(bi | D) · dbi

=
λ · ρ · (

∏ni
j=1 y

ρ−1
ij )

(2 · π)q/2· | D |1/2
·
∫

exp
[
f̃(yi) + g̃(bi)

]
· dbi, (F.27)

where g̃(bi) = −b
′
i ·D−1 ·bi/2. The log-likelihood contribution for the ith subject can be

written as:

f(yi) = log

[
λ · ρ · (

∏ni
j=1 y

ρ−1
ij )

(2 · π)q/2· | D |1/2
·
∫

exp
[
f̃(yi) + g̃(bi)

]
· dbi

]
∝ −1

2
· log | D | +logKi, (F.28)

where Ki =
∫
Ii · dbi = c · φ̃(yi) and Ii = exp

[
f̃(yi) + g̃(bi)

]
.

The first derivative of the log-likelihood with respect to the fixed effects takes the following
form:

∂li(β, D)

∂β
=

1

Ki

·
∫
Ii ·

{
ni∑
j=1

[
xij − λ · yρij · exp(µij) · xij

]}
· dbi

=

ni∑
j=1

xij −
1

Ki

·
ni∑
j=1

[
λ · yρij · xij ·

∫
Ii · exp(µij) · dbi

]
. (F.29)

The component relative to the integral part in (F.29) can be rewritten as:∫
Ii · exp(µij) · dbi = c · φ̃(yi) ·

∫
exp(µij) · φ̃(bi | yi) · dbi

= c · φ̃(yi) · exp(x
′

ij · ξ) ·
∫

exp(z
′

i · bi) · φ̃(bi | yi) · dbi

= c · φ̃(yi) · exp(x
′

ij · ξ) · exp

(
1

2
· z′ij ·D · zij

)
= c · φ̃(yi) · exp

(
x
′

ij · ξ +
1

2
· z′ij ·D · zij

)
. (F.30)
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Expanding the component functions in (F.29) leads to:

∂li(β, D)

∂β
=

ni∑
j=1

xij − λ ·
ni∑
j=1

yρij · xij · exp(µij). (F.31)

Further, the first derivative with respect to the D-components is:

∂li(β, D)

∂djk
= −1

2
· (2− δjk) · (D−1)jk +

1

2 ·Ki

·
∫
Ii · b

′

i ·D−1 · Ejk ·D−1 · bi · dbi.

(F.32)

Solving the integral expression leads to:∫
Ii · b

′

i ·D−1 · Ejk ·D−1 · bi · dbi = c · φ̃(yi) · E(b
′

i ·D−1 · Ejk ·D−1 · bi | yi)

= c · φ̃(yi) · E
[
tr(b

′

i ·D−1 · Ejk ·D−1 · bi)
]

= c · φ̃(yi) · tr
[
D−1 · Ejk ·D−1 · E(b

′

i · bi | yi)
]
,

(F.33)

where Ejk defined in Section F.1.2. Expectation E(b
′
i · bi | yi) is derived using the closed

form for the Weibull-normal model:

E(b
′

i · bi | yi) =

∫
b
′

i · bi · φ̃(bi | yi)

=

∫
b
′

i · bi ·
φ̃(yi | bi) · η̃(bi)

φ̃(yi)
· bi

=
1

φ̃(yi)
·
∫

b
′

i · bi ·
∑
m

ni∏
j=1

(−1)mj

mj!
· λmj+1 · ρ · y(mj+1)·ρ−1

ij · 1

(2 · π)q/2· | D |1/2

· exp

[
(mj + 1) · µij −

1

2
· b′i ·D−1 · bi

]
· dbi

=
1

φ̃(yi)
·
∑
m

ni∏
j=1

(−1)mj

mj!
· λmj+1 · ρ · y(mj+1)·ρ−1

ij · 1

(2 · π)q/2· | D |1/2

·
∫

b
′

i · bi · exp

[
(mj + 1) · µij −

1

2
· b′i ·D−1 · bi

]
· dbi, (F.34)

where φ̃(yi) = Ki/c. Reorganizing the components of the exponential expression in the
integrand of (F.34) leads to:

−1

2
· b′i ·D−1 · bi + (mj + 1) · µij = −1

2
· (bi − k)

′ ·D−1 · (bi − k) + l, (F.35)

with

k = (mj + 1) ·D · zij, l = (mj + 1) ·
[
x
′

ij · β +
1

2
· (mj + 1) · z′ij ·D · zij

]
, b̃i = bi − k.

(F.36)
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Rewriting φ̃(yi) leads to:

φ̃(yi) =
∑
m

ni∏
j=1

(−1)mj

mj!
· λmj+1 · ρ · y(mj+1)·ρ−1

ij · exp(l). (F.37)

Combining (F.34) and (F.35) produces:

E(b
′

i · bi | yi) =
1

φ̃(yi)
·
∑
m

ni∏
j=1

(−1)mj

mj!
· λmj+1 · ρ · y(mj+1)·ρ−1

ij · exp(l)

(2 · π)q/2· | D |1/2

·
∫

(b̃i + k)
′ · (b̃i + k) · exp

(
−1

2
· b̃′i ·D−1 · b̃i

)
· db̃i

=
1

φ̃(yi)
·
∑
m

ni∏
j=1

(−1)mj

mj!
· λmj+1 · ρ · y(mj+1)·ρ−1

ij · exp(l) · E
[
(b̃i + k)

′ · (b̃i + k)
]

=
1

φ̃(yi)
·
∑
m

ni∏
j=1

(−1)mj

mj!
· λmj+1 · ρ · y(mj+1)·ρ−1

ij · exp(l) · E(b
′

i · bi)

= Var(bi). (F.38)

Plugging (F.37) into (F.33) and (F.32) yields:

∂li(β, D)

∂djk
= −1

2
· (2− δjk) · (D−1)jk +

1

2
· tr
[
D−1 · Ejk ·D−1 · Var(bi)

]
= −1

2
· (2− δjk) ·

[
(D−1)jk − (D−1 ·D−1)jk · Var(bi)

]
(F.39)

where δjk is as before.

The vector ∆i of first-order partial derivative of the contribution of the ith subject to the
log-likelihood is now given by:

∆i =



∑ni
j=1 xij − λ ·

∑ni
j=1 y

ρ
ij · xij · exp(µij)

−1
2
· (D−1)11 + 1

2
· (D−1 ·D−1)11 · Var(bi)

−(D−1)12 + (D−1 ·D−1)12 · Var(bi)
−1

2
· (D−1)22 + 1

2
· (D−1 ·D−1)22 · Var(bi)

...
−(D−1)q−1,q + (D−1 ·D−1)q−1,q · Var(bi)
−1

2
· (D−1)qq + 1

2
· (D−1 ·D−1)qq · Var(bi)


(F.40)

Rewriting ‖∆i‖ as the sum of squares of the contributions for the ith individual yields:

‖∆i‖ =

(
ni∑
j=1

xij −Qi

)2

+

q∑
k=1

[
−1

2
· (D−1)kk +

1

2
· (D−1 ·D−1)kk · Var(bi)

]2

+
∑
k<l

[
−(D−1)kl + (D−1 ·D−1)kl · Var(bi)

]2
=

(
ni∑
j=1

xij

)
·

(
ni∑
j=1

xij

)′
− 2 ·

ni∑
j=1

xij ·Q
′

i + Qi ·Q
′

i

+
∑
k,l

[
−1

2
· (D−1)kl +

1

2
· (D−1 ·D−1)kl · Var(bi)

]2

, (F.41)
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where Qi = λ ·
∑ni

j=1 y
ρ
ij · xij · exp(µij). Write Ci = C1i + C2i, with:

C1i = 2 · ‖L̈−1‖ ·
(
‖xi‖2 − 2 · xi ·Qi + ‖Qi‖2

)
· cos(ϕi),

C2i =
1

2
· ‖L̈−1‖ · ‖(D−1)kl − (D−1 ·D−1)kl · Var(bi)‖2 · cos(ϕi), (F.42)

where xi =
∑ni

j=1 xij. Note that C1i and C2i are the contributions of the ith subject to
local influence contributions Ci from β and D, respectively. Rewriting the component of
C2i leads to:

‖(D−1)kl − (D−1 ·D−1)kl · Var(bi)‖2 = tr
{[

(D−1)kl − (D−1 ·D−1)kl · Var(bi)
]2}

= tr
[
(D−1)2

kl

]
− tr

[
2 · (D−1)kl · (D−1 ·D−1)kl · Var(bi)

]
+ tr

[
(D−1 ·D−1)2

kl · Var(bi)
2
]
. (F.43)

It then follows that:

C1i = 2 · ‖L̈−1‖ ·
(
‖xi‖2 − 2 · xi ·Qi + ‖Qi‖2

)
· cos(ϕi),

C2i =
1

2
· ‖L̈−1‖ · cos(ϕi) · tr

[
(D−1)2

kl

]
− tr

[
2 · (D−1)kl · (D−1 ·D−1)kl · Var(bi)

]
+ tr

[
(D−1 ·D−1)2

kl · Var(bi)
2
]
. (F.44)

Hence, the interpretable components of Ci for the Weibull normal model can be de-
scribed using the length of fixed effect (‖xi‖2) and the squared of random effect variability
(Var(bi)

2), in analogy with the Poisson-normal model.
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Chapter G

Supplementary Material for Chapter
11

G.1 Descriptive Statistics of the Asthma dataset

Before applying specific modeling techniques to the asthma dataset, descriptive analysis
is advisable a priori. Therefore, descriptive statistics of all variables are done, leading to
the following main conclusions:

1. An average of 7.66 follow-ups were present per patient;

2. From these follow-ups, an average of 6.71 asthma attacks was present per patient,
where patients with ID 74, 107 and 177 have the most attacks, i.e., 23, 22 and 21,
respectively, while ID’s 69, 89 and 228 didn’t had any attacks at all;

3. From the patients that were present in the study, 93.53% had a censored observation
(due to drop-out, lost to follow-up, etc.);

4. A total of 51.72% patients received the drug, while the other 48.28% received the
placebo;

In Chapter 11, main interest lies in the development of an appropriate modeling fit for
the time to recurrence of an asthma attack, i.e., a repeated time-to-event outcome. Since
Weibull and Exponential are both popular tools, simple diagnostics are first done on the
distribution of this outcome. From Figure G.1, both choices seems reasonable. Here, the
exponential one is chosen as underlying theoretical distribution.
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Figure G.1: Graphical diagnostics check of the time to recurrence of an asthma attack for
Weibull (left) and Exponential (right) distribution.

G.2 Relevant SAS code for analyzing the Asthma

dataset

/∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗
SOFTWARE: SAS 9 . 3 .
OBJECTIVE: A f u l l a n a l y s i s o f the Asthma datase t us ing the WGN
model ( 4 . 1 ) − ( 4 . 3 ) , with rho equal to 1 , i . e . , the exponent ia l−
gamma−normal model ;
DATASET: Example 9 o f Duchateau & Janssen ( 2 0 0 8 ) ;
VARIABLE DESCRIPTION:
Patid : Pat ient ID ;
Begin and End : time i n t e r v a l between events f o r each pa t i en t ;
Status : Right c enso r ing i n d i c a t o r (1 = Asthma Attack , 0 = Censo−
red ) ;
Drug : Treatment i n d i c a t o r (1 = Drug , 0 = Placebo ) .
REFERENCES: Idd i e t a l (2014) & Molenberghs et a l ( 2 0 1 3 ) .

Thanks g iven to Samuel Iddi , Achmad Efendi , Tr ias Wahyuni Rakhma−
wati and Geert Molenberghs , f o r prov id ing r e l e v a n t SAS code .
∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗/
libname asthma ’D:\Mijn Documenten\Master S t a t i s t i e k \Maste r the s i s

\Data ’ ;

data asthma ;
s e t asthma . asthma ;

run ;

G.2.1 Several Hierarchical Modeling Strategies with different
Estimation Strategies

/∗ Exponent ia l model , v ia NLMIXED ∗/
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proc nlmixed data=asthma tech=newrap ;
parms Beta 0=−3 Beta 1=−0.2 gamma=1;
rho =1;
eta = Beta 0 + Beta 1 ∗( Drug=1);
expeta = exp ( eta ) ;
l l = log ( rho ) + log (gamma) + (gamma−1)∗ l og (Time) + eta

− ( rho )∗ ( Time∗∗gamma)∗ expeta ;
model Time ˜ gene ra l ( l l ) ;

run ;

/∗ Exponential−Gamma model ∗/
proc nlmixed data=asthma tech=quanew ;

parms Beta 0=−3 Beta 1=−0.2 lambda=1 alpha =1;
rho =1;
eta = Beta 0 + Beta 1 ∗( Drug=1);
expeta = exp ( eta ) ;
l l = log ( lambda ) + log ( rho ) + ( alpha +1)∗ l og ( alpha )

+ ( rho−1)∗ l og (Time) + eta
− ( alpha +1)∗ l og ( lambda ∗(Time∗∗ rho )∗ expeta + alpha ) ;

model Time ˜ gene ra l ( l l ) ;
run ;

/∗ Exponential−Normal model ∗/
proc nlmixed data=asthma qpo int s =50;

rho =1;
eta = Beta 0 + Beta 1 ∗( Drug=1) + b1 ;
expeta = exp ( eta ) ;
l l = log ( rho ) + log (gamma) + (gamma−1)∗ l og (Time)

+ eta − rho ∗(Time∗∗gamma)∗ expeta ;
model Time ˜ gene ra l ( l l ) ;
random b1 ˜ normal (0 , sigma ∗∗2) sub j e c t=Patid ;

run ;

/∗ Exponential−Gamma−Normal model∗/
proc nlmixed data=asthma tech=quanew qpo int s=50 maxit =1000;

bounds lambda > 0 , alpha > 0 ;
parms Beta 0=−3 Beta 1=−0.2 lambda = 1 alpha =3.3 sigma =1;
rho =1;
eta = Beta 0 + Beta 1 ∗( Drug=1) + b1 ;
expeta = exp ( eta ) ;
l l = log ( lambda ) + log ( rho ) + ( alpha +1)∗ l og ( alpha )

+ ( rho−1)∗ l og (Time) + eta
− ( alpha +1)∗ l og ( lambda ∗(Time∗∗ rho )∗ expeta + alpha ) ;

model Time ˜ gene ra l ( l l ) ;
random b1 ˜ normal (0 , sigma ∗∗2) sub j e c t=Patid ;

run ;
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/∗ Combined model without censo r ing ∗/
proc nlmixed data=asthma tech=quanew qpo int s=50 maxit =1000;

bounds lambda > 0 , alpha > 0 ;
parms Beta 0=−3 Beta 1=−0.2 lambda = 1 alpha =3.3

sigma =1;
rho =1;
eta = Beta 0 + Beta 1 ∗( Drug=1) + b1 ;
expeta = exp ( eta ) ;
l l = log ( lambda ) + log ( rho ) + ( alpha +1)∗ l og ( alpha )

+ ( rho−1)∗ l og (Time) + eta
− ( alpha +1)∗ l og ( lambda ∗(Time∗∗ rho )∗ expeta + alpha ) ;

model Time ˜ gene ra l ( l l ) ;
random b1 ˜ normal (0 , sigma ∗∗2) sub j e c t=Patid ;

run ;

/∗ Combined model with censo r ing ∗/
proc nlmixed data=asthma tech=quanew qpo int s=50 maxit =1000;

bounds lambda > 0 , alpha > 0 ;
parms Beta 0=−3 Beta 1=−0.11 lambda = 1 alpha =3.3 sigma =1;
rho =1;
eta = Beta 0 + Beta 1 ∗( Drug=1) + b1 ;
expeta = exp ( eta ) ;
c0 = 1/((1 + lambda∗ expeta ∗(Time∗∗ rho )∗ (1/ alpha ))∗∗ alpha ) ;
c1 = log ( lambda ) + log ( rho ) + ( alpha +1)∗ l og ( alpha )

+ ( rho−1)∗ l og (Time) + eta
− ( alpha +1)∗ l og ( lambda ∗(Time∗∗ rho )∗ expeta + alpha ) ;

l l = ( s t a t u s =0)∗ l og ( c0 ) + ( s t a tu s =1)∗c1 ;
model Time ˜ gene ra l ( l l ) ;
random b1 ˜ normal (0 , sigma ∗∗2) sub j e c t=Patid out=EB out ;

run ;

/∗ Pseudo−l i k e l i h o o d , No censo r ing ∗/
data asma1 ;

s e t work . asthma ;
keep pat id drug time ;

run ;

proc s o r t data=asma1 ;
by pat id ;

run ;

%macro pseudosurv ( data= , sub j e c t= , f i x e d= , re sponse= ) ;
proc f r e q data=&data ;

t a b l e s &sub j e c t / out=f r e q nopr int ;
run ;
data f r e q ;

s e t f r e q ;
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keep &sub j e c t count ;
run ;
proc iml ;

use f r e q ;
read a l l i n to f ;
use &data ;
read a l l i n to y [ colname=co ln ] ;
n f=nrow ( f ) ;
ny=nrow ( y ) ;
do i=1 to nf ;

code sub j ec t = f [ i , 1 ] ;
f r e e newdata ;
do b=1 to ny ;

i f y [ b ,1 ]= codesub j ec t then do ;
m=y [ b , ] ;
newdata=newdata//m;

end ;
end ;
n i=nrow ( newdata ) ;
npa i r=ni ∗( ni −1)/2;
p a i r s=J ( npair , 4 , 0 ) ;
h=1;
do j=1 to ( ni −1);

do k=j+1 to n i ;
p a i r s [ h ,1 ]= codesub j ec t ;
p a i r s [ h ,2 ]= newdata [ 1 , 2 ] ;
p a i r s [ h ,3 ]= newdata [ j , 3 ] ;
p a i r s [ h ,4 ]= newdata [ k , 3 ] ;
h=h+1;

end ;
end ;

r e s u l t=r e s u l t // p a i r s ;
end ;
x=r e s u l t ;
x1=x [ , 1 ] | | x [ , 2 ] ;
x2=x [ , 3 ] | | x [ , 4 ] ;
npa i r=nrow ( x1 ) ;
z1=x1//x1 ;
c a l l s o r t ( z1 ,{1 2} ) ;
z2=shape ( x2 , npa i r ∗2 , 1 ) ;
a1=1: npa i r ;
a2=a1 ‘ | | a1 ‘ ;
z3=shape ( a2 , npa i r ∗2 , 1 ) ;
z=z1 | | z2 | | z3 ;
c r e a t e l a s t from z ; append from z ;

qu i t ;
proc f r e q data=l a s t ;
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t a b l e s co l 1 / out=f r e q nopr int ;
run ;
data f r e q ;

s e t f r e q ;
keep co l 1 count ;

run ;
proc iml ;

use f r e q ;
read a l l i n to f ;
use l a s t ;
read a l l i n to w;
nf=nrow ( f ) ;
do i=1 to nf ;

a1=1: f [ i , 2 ] / 2 ;
a2=a1//a1 ;
a3=shape ( a2 ‘ , f [ i , 2 ] , 1 ) ;
b=b//a3 ;

end ;
c=w | | b ;
cname = {” Subj ” , ” Fixed ” , ”Resp ” , ”Pairnum ” ,

” Pa i r sub j ”} ;
c r e a t e l a s t 1 from c [ colname=cname ] ; append from c ;

qu i t ;
%mend pseudosurv ;

%pseudosurv ( data=asma1 , sub j e c t= patid , f i x e d= drug , re sponse= time ) ;

data asma2 ;
s e t l a s t 1 ;
pat id=subj ;
drug=f i x e d ;
time=resp ;
keep pat id drug time pairnum p a i r s u b j ;

run ;

proc l i f e r e g data=asma2 order=data ;
c l a s s drug ;
model time = drug / d i s t r i b u t i o n=we ibu l l ;

run ;

/∗ Exponent ia l model v ia NLMIXED ∗/
proc nlmixed data=asma2 tech=newrap ;

parms Beta 0=−3.9 Beta 1=−0.09 gamma=1;
rho =1;
eta = Beta 0 + Beta 1 ∗( Drug=1);
expeta = exp ( eta ) ;
l l = log ( rho ) + log (gamma) + (gamma−1)∗ l og (Time)
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+ eta − ( rho )∗ ( Time∗∗gamma)∗ expeta ;
model Time ˜ gene ra l ( l l ) ;

run ;

/∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗
Exponent ia l model with gamma f r a i l t y and random Ef f e c t s ,
f i t t i n g model that has f i v e parameters in i t
∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗/
proc nlmixed data=asma2 tech=quanew qpo int s=50 maxit =1000;

bounds lambda > 0 , alpha > 0 ;
parms Beta 0=−3.3 Beta 1=−0.08 lambda=1 alpha =3.3

sigma =1;
rho =1;
eta = Beta 0 + Beta 1 ∗( Drug=1) + b1 ;
expeta = exp ( eta ) ;
l l = log ( lambda ) + log ( rho ) + ( alpha +1)∗ l og ( alpha )

+ ( rho−1)∗ l og (Time) + eta
− ( alpha +1)∗ l og ( lambda ∗(Time∗∗ rho )∗ expeta + alpha ) ;

model Time ˜ gene ra l ( l l ) ;
random b1 ˜ normal (0 , sigma ∗∗2) sub j e c t=pairnum ;
ods output ParameterEstimates=i n i t i a l ;

run ;

data i n i t i a l ;
s e t i n i t i a l ;
keep es t imate ;

run ;

proc iml ;
use i n i t i a l ;
read a l l i n to r ;
b0=r [ 1 , 1 ] ;
b1=r [ 2 , 1 ] ;
b2=r [ 3 , 1 ] ;
b3=r [ 4 , 1 ] ;
b4=r [ 5 , 1 ] ;
c a l l symput ( ’ es0 ’ , l e f t ( char ( b0 ) ) ) ;
c a l l symput ( ’ es1 ’ , l e f t ( char ( b1 ) ) ) ;
c a l l symput ( ’ es2 ’ , l e f t ( char ( b2 ) ) ) ;
c a l l symput ( ’ es3 ’ , l e f t ( char ( b3 ) ) ) ;
c a l l symput ( ’ es4 ’ , l e f t ( char ( b4 ) ) ) ;

qu i t ;

data asma3 ;
s e t asma2 ;
drop pairnum ;

run ;
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proc s o r t data=asma3 ;
by pat id ;

run ;

%macro se5 ;
%do i=1 %to 230 ;

data asm&i ;
s e t asma3 ;
where pat id=&i ;

run ;
proc s o r t data=asm&i ;

by p a i r s u b j ;
run ;
proc nlmixed data=asm&i tech=quanew qpo int s=50

noad maxit=1000 s t a r t hess ;
bounds lambda > 0 , alpha > 0 ;
parms Beta 0=&es0 Beta 1=&es1

lambda=&es2 alpha=&es3 sigma=&es4 ;
rho =1;
eta = Beta 0 + Beta 1 ∗( Drug=1) + b1 ;
expeta = exp ( eta ) ;
l l = log ( lambda ) + log ( rho )

+ ( alpha +1)∗ l og ( alpha )
+ ( rho−1)∗ l og (Time) + eta
− ( alpha +1)∗ l og ( lambda ∗(Time∗∗ rho )
∗ expeta + alpha ) ;

model Time ˜ gene ra l ( l l ) ;
random b1 ˜ normal (0 , sigma ∗∗2)

sub j e c t=p a i r s u b j ;
ods output s t a r t i n g v a l u e s=grad

s t a r t i n g h e s s i a n=hes&i ;
run ;
data grad&i ;

s e t grad ;
keep grad i en t ;

run ;
%end ;
data s co r e ;

s e t n u l l ;
run ;
data hess ;

s e t n u l l ;
run ;
%do i=1 %to 230 ;

data s co r e ;
s e t s co r e grad&i ;
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run ;
data hess ;

s e t hess hes&i ;
run ;

%end ;
data hess ;

s e t hess ;
drop row parameter ;

run ;
proc iml ;

use s co r e ;
read a l l i n to s ;
use hess ;
read a l l i n to h ;
nid=nrow ( s ) / 5 ;
nidh=nrow (h ) / 5 ;
a=1: nid ;
b=J ( 5 , 1 , 1 ) ;
c=b@(a ‘ ) ;
a1=1: nidh ;
b1=J ( 5 , 1 , 1 ) ;
c1=b1@( a1 ‘ ) ;
c r e a t e s1 from c ;
append from c ;
c r e a t e s2 from c1 ;
append from c1 ;

qu i t ;
proc s o r t data=s1 ;

by co l 1 ;
run ;
proc s o r t data=s2 ;

by co l 1 ;
run ;
proc iml ;

use s co r e ;
read a l l i n to s co r ;
use hess ;
read a l l i n to hes ;
use s1 ;
read a l l i n to j1 ;
use s2 ;
read a l l i n to j2 ;
s co r1=j1 | | s co r ;
hes1=j2 | | hes ;
I1=J ( 5 , 5 , 0 ) ;
do i=1 to 230 ;

f r e e g ;
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do b=1 to (230∗5 ) ;
i f s co r1 [ b ,1 ]= i then do ;

m=scor1 [ b , 2 ] ;
g=g//m;

end ;
end ;
sg=g∗g ‘ ;
I1=I1+sg ;

end ;
I0=J ( 5 , 5 , 0 ) ;
do i=1 to 226 ;

f r e e g1 ;
do b=1 to (226∗5 ) ;

i f hes1 [ b ,1 ]= i then do ;
m=hes1 [ b , 2 ] | | hes1 [ b , 3 ]
| | hes1 [ b , 4 ] | | hes1 [ b , 5 ]
| | hes1 [ b , 6 ] ;

g1=g1//m;
end ;

end ;
I0=I0+g1 ;

end ;
vmatn=inv ( I0 ) ;
n a i v s e=s q r t ( vecd iag (vmatn ) ) ;
vmat=inv ( I0 )∗ I1 ∗ inv ( I0 ) ;
emp se=s q r t ( vecd iag (vmat ) ) ;
/∗ naive and empr se ∗/
se=n a i v s e | | emp se ;
p r i n t se ;

qu i t ;
%mend ;
%se5 ;

/∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗
Weibull model with gamma f r a i l t y and random Ef f e c t s ,
f i t t i n g model that has four parameters in i t , lambda f i x e d
∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗/
proc nlmixed data=asma2 tech=quanew qpo int s=50 maxit =1000;

bounds alpha > 0 ;
parms Beta 0=−3.3 Beta 1=−0.08 alpha =3.3 sigma =1;
rho =1;
lambda=1;
eta = Beta 0 + Beta 1 ∗( Drug=1) + b1 ;
expeta = exp ( eta ) ;
l l = log ( lambda ) + log ( rho ) + ( alpha +1)∗ l og ( alpha )

+ ( rho−1)∗ l og (Time) + eta
− ( alpha +1)∗ l og ( lambda ∗(Time∗∗ rho )∗ expeta + alpha ) ;
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model Time ˜ gene ra l ( l l ) ;
random b1 ˜ normal (0 , sigma ∗∗2) sub j e c t=pairnum ;
ods output ParameterEstimates=i n i t i a l 2 ;

run ;

data i n i t i a l 2 ;
s e t i n i t i a l 2 ;
keep es t imate ;

run ;

proc iml ;
use i n i t i a l 2 ;
read a l l i n to r ;
b0=r [ 1 , 1 ] ;
b1=r [ 2 , 1 ] ;
b2=r [ 3 , 1 ] ;
b3=r [ 4 , 1 ] ;
c a l l symput ( ’ esa0 ’ , l e f t ( char ( b0 ) ) ) ;
c a l l symput ( ’ esa1 ’ , l e f t ( char ( b1 ) ) ) ;
c a l l symput ( ’ esa2 ’ , l e f t ( char ( b2 ) ) ) ;
c a l l symput ( ’ esa3 ’ , l e f t ( char ( b3 ) ) ) ;

qu i t ;

proc s o r t data=asma3 ;
by pat id ;

run ;
%macro se4 ;

%do i=1 %to 230 ;
data asm&i ;

s e t asma3 ;
where pat id=&i ;

run ;
proc s o r t data=asm&i ;

by p a i r s u b j ;
run ;
proc nlmixed data=asm&i tech=quanew qpo int s=50

maxit=1000 s t a r t hess ;
bounds alpha > 0 ;
parms Beta 0=&esa0 Beta 1=&esa1

alpha=&esa2 sigma=&esa3 ;
rho =1;
lambda=1;
eta = Beta 0 + Beta 1 ∗( Drug=1) + b1 ;
expeta = exp ( eta ) ;
l l = log ( lambda ) + log ( rho )

+ ( alpha +1)∗ l og ( alpha )
+ ( rho−1)∗ l og (Time) + eta
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− ( alpha +1)∗ l og ( lambda ∗(Time∗∗ rho )
∗ expeta + alpha ) ;

model Time ˜ gene ra l ( l l ) ;
random b1 ˜ normal (0 , sigma ∗∗2)

sub j e c t=p a i r s u b j ;
ods output s t a r t i n g v a l u e s=grad

s t a r t i n g h e s s i a n=hes&i ;
run ;
data grad&i ;

s e t grad ;
keep grad i en t ;

run ;
%end ;
data s co r e ;

s e t n u l l ;
run ;
data hess ;

s e t n u l l ;
run ;
%do i=1 %to 230 ;

data s co r e ;
s e t s co r e grad&i ;

run ;
data hess ;

s e t hess hes&i ;
run ;

%end ;
data hess ;

s e t hess ;
drop row parameter ;

run ;
proc iml ;

use s co r e ;
read a l l i n to s ;
use hess ;
read a l l i n to h ;
nid=nrow ( s ) / 4 ;
nidh=nrow (h ) / 4 ;
a=1: nid ;
b=J ( 4 , 1 , 1 ) ;
c=b@(a ‘ ) ;
a1=1: nidh ;
b1=J ( 4 , 1 , 1 ) ;
c1=b1@( a1 ‘ ) ;
c r e a t e s1 from c ;
append from c ;
c r e a t e s2 from c1 ;
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append from c1 ;
qu i t ;
proc s o r t data=s1 ;

by co l 1 ;
run ;
proc s o r t data=s2 ;

by co l 1 ;
run ;
proc iml ;

use s co r e ;
read a l l i n to s co r ;
use hess ;
read a l l i n to hes ;
use s1 ;
read a l l i n to j1 ;
use s2 ;
read a l l i n to j2 ;
s co r1=j1 | | s co r ;
hes1=j2 | | hes ;
I1=J ( 4 , 4 , 0 ) ;
do i=1 to 230 ;

f r e e g ;
do b=1 to (230∗4 ) ;

i f s co r1 [ b ,1 ]= i then do ;
m=scor1 [ b , 2 ] ;
g=g//m;

end ;
end ;
sg=g∗g ‘ ;
I1=I1+sg ;

end ;
I0=J ( 4 , 4 , 0 ) ;
do i=1 to 226 ;

f r e e g1 ;
do b=1 to (226∗4 ) ;

i f hes1 [ b ,1 ]= i then do ;
m=hes1 [ b , 2 ] | | hes1 [ b , 3 ]
| | hes1 [ b , 4 ] | | hes1 [ b , 5 ] ;

g1=g1//m;
end ;

end ;
I0=I0+g1 ;

end ;
vmatn=inv ( I0 ) ;
n a i v s e=s q r t ( vecd iag (vmatn ) ) ;
vmat=inv ( I0 )∗ I1 ∗ inv ( I0 ) ;
emp se=s q r t ( vecd iag (vmat ) ) ;
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se=n a i v s e | | emp se ;
p r i n t se ;

qu i t ;
%mend ;
%se4 ;

/∗ Pseudo−l i k e l i h o o d , Censoring ∗/
%macro p l c en so r ( data= , sub j e c t= , s t a t u s= status , f i x e d= ,

re sponse= ) ;
proc f r e q data=&data ;

t a b l e s &sub j e c t / out=f r e q nopr int ;
run ;
data f r e q ;

s e t f r e q ;
keep &sub j e c t count ;

run ;
proc iml ;

use f r e q ;
read a l l i n to f ;
use &data ;
read a l l i n to y [ colname=co ln ] ;
n f=nrow ( f ) ;
ny=nrow ( y ) ;
do i=1 to nf ;

code sub j ec t = f [ i , 1 ] ;
f r e e newdata ;
do b=1 to ny ;

i f y [ b ,1 ]= codesub j ec t then do ;
m=y [ b , ] ;
newdata=newdata//m;

end ;
end ;
n i=nrow ( newdata ) ;
Npair=ni ∗( ni −1)/2;
p a i r s=J ( Npair , 6 , 0 ) ;
h=1;
do j=1 to ( ni −1);

do k=j+1 to n i ;
p a i r s [ h ,1 ]= codesub j ec t ;
p a i r s [ h ,2 ]= newdata [ j , 2 ] ;
p a i r s [ h ,3 ]= newdata [ k , 2 ] ;
p a i r s [ h ,4 ]= newdata [ 1 , 3 ] ;
p a i r s [ h ,5 ]= newdata [ j , 4 ] ;
p a i r s [ h ,6 ]= newdata [ k , 4 ] ;
h=h+1;

end ;
end ;
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r e s u l t=r e s u l t // p a i r s ;
end ;
x=r e s u l t ;
x1=x [ , 1 ] | | x [ , 4 ] ;
x2=x [ , 2 ] | | x [ , 3 ] ;
x3=x [ , 5 ] | | x [ , 6 ] ;
z1=x1//x1 ;
c a l l s o r t ( z1 ,{1 2} ) ;
z2=shape ( x2 , nrow ( x2 ) ∗ 2 , 1 ) ;
z3=shape ( x3 , nrow ( x3 ) ∗ 2 , 1 ) ;
npa i r=nrow ( z1 ) / 2 ;
a1=1: npa i r ;
a2=a1//a1 ;
z4=shape ( a 2 , nrow ( z1 ) , 1 ) ;
z=z1 | | z2 | | z3 | | z4 ;
c r e a t e l a s t from z ;
append from z ;

qu i t ;
proc f r e q data=l a s t ;

t a b l e s co l 1 / out=f r e q nopr int ;
run ;
data f r e q ;

s e t f r e q ;
keep co l 1 count ;

run ;
proc iml ;

use f r e q ;
read a l l i n to f ;
use l a s t ;
read a l l i n to w[ colname=co ln ] ;
n f=nrow ( f ) ;
do i=1 to nf ;

a1=1: f [ i , 2 ] / 2 ;
a2=a1//a1 ;
a3=shape ( a2 ‘ , f [ i , 2 ] , 1 ) ;
b=b//a3 ;

end ;
c=w | | b ;
cname = {” Subj ” , ” Fixed ” , ” Status ” , ”Resp ” ,

”Pairnum ” , ” Pa i r sub j ”} ;
c r e a t e l a s t 1 from c [ colname=cname ] ; append from c ;

qu i t ;
%mend p l c en so r ;

%p l c en so r ( data=asma1 , sub j e c t=patid , s t a t u s=status , f i x e d=drug ,
re sponse=time ) ;
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data asma2 ;
s e t l a s t 1 ;
pat id=subj ;
drug=f i x e d ;
time=resp ;
keep pat id s t a t u s drug time pairnum p a i r s u b j ;

run ;

proc s o r t data=asma2 ;
by pat id ;

run ;

proc l i f e r e g data=asma2 order=data ;
c l a s s drug ;
model time = drug / d i s t r i b u t i o n=we ibu l l ;

run ;

proc l i f e r e g data=asma2 order=data ;
c l a s s Drug ;
model Time∗ Status (0 ) = Drug / d i s t r i b u t i o n=we ibu l l ;

run ;

/∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗
Weibull model with gamma f r a i l t y and random Ef f e c t s ,
i n c o r p o r a t i n g censor ing , f i t t i n g model that has f i v e parameters
in i t .
∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗/
proc nlmixed data=asma2 tech=quanew qpo int s=50 maxit =1000;

bounds lambda > 0 , alpha > 0 ;
parms Beta 0=−3.8 Beta 1=−0.15 lambda=1 alpha=5 sigma =1;
rho =1;
eta = Beta 0 + Beta 1 ∗( Drug=1) + b1 ;
expeta = exp ( eta ) ;
c0 = 1/((1 + lambda∗ expeta ∗(Time∗∗ rho )∗ (1/ alpha ))∗∗ alpha ) ;
c1 = log ( lambda ) + log ( rho ) + ( alpha +1)∗ l og ( alpha )

+ ( rho−1)∗ l og (Time) + eta
− ( alpha +1)∗ l og ( lambda ∗(Time∗∗ rho )∗ expeta + alpha ) ;

l l = ( s t a t u s =0)∗ l og ( c0 ) + ( s t a tu s =1)∗c1 ;
model Time ˜ gene ra l ( l l ) ;
random b1 ˜ normal (0 , sigma ∗∗2) sub j e c t=Pairnum ;
ods output parameteres t imates=i n i t i a l ;

run ;

data i n i t i a l ;
s e t i n i t i a l ;
keep es t imate ;

run ;
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proc iml ;
use i n i t i a l ;
read a l l i n to r ;
b0=r [ 1 , 1 ] ;
b1=r [ 2 , 1 ] ;
b2=r [ 3 , 1 ] ;
b3=r [ 4 , 1 ] ;
b4=r [ 5 , 1 ] ;
c a l l symput ( ’ es0 ’ , l e f t ( char ( b0 ) ) ) ;
c a l l symput ( ’ es1 ’ , l e f t ( char ( b1 ) ) ) ;
c a l l symput ( ’ es2 ’ , l e f t ( char ( b2 ) ) ) ;
c a l l symput ( ’ es3 ’ , l e f t ( char ( b3 ) ) ) ;
c a l l symput ( ’ es4 ’ , l e f t ( char ( b4 ) ) ) ;

qu i t ;

data asma3 ;
s e t asma2 ;
drop pairnum ;

run ;

proc s o r t data=asma3 ;
by pat id ;

run ;

%macro se5 ;
%do i=1 %to 230 ;

data asm&i ;
s e t asma3 ;
where pat id=&i ;

run ;
proc s o r t data=asm&i ;

by p a i r s u b j ;
run ;
proc nlmixed data=asm&i tech=quanew qpo int s=50

noad maxit=1000 s t a r t hess ;
bounds lambda > 0 , alpha > 0 ;
parms Beta 0=&es0 Beta 1=&es1 lambda=&es2

alpha=&es3 sigma=&es4 ;
rho =1;
eta = Beta 0 + Beta 1 ∗( Drug=1) + b1 ;
expeta = exp ( eta ) ;
c0 = 1/((1 + lambda∗ expeta ∗(Time∗∗ rho )

∗(1/ alpha ))∗∗ alpha ) ;
c1 = log ( lambda ) + log ( rho )

+ ( alpha +1)∗ l og ( alpha )
+ ( rho−1)∗ l og (Time) + eta
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− ( alpha +1)∗ l og ( lambda ∗(Time∗∗ rho )
∗ expeta + alpha ) ;

l l = ( s t a t u s =0)∗ l og ( c0 ) + ( s t a tu s =1)∗c1 ;
model Time ˜ gene ra l ( l l ) ;
random b1 ˜ normal (0 , sigma ∗∗2)

sub j e c t=p a i r s u b j ;
ods output s t a r t i n g v a l u e s=grad

s t a r t i n g h e s s i a n=hes&i ;
run ;
data grad&i ;

s e t grad ;
keep grad i en t ;

run ;
%end ;
data s co r e ;

s e t n u l l ;
run ;
data hess ;

s e t n u l l ;
run ;
%do i=1 %to 230 ;

data s co r e ;
s e t s co r e grad&i ;

run ;
data hess ;

s e t hess hes&i ;
run ;

%end ;
data hess ;

s e t hess ;
drop row parameter ;

run ;
proc iml ;

use s co r e ;
read a l l i n to s ;
use hess ;
read a l l i n to h ;
nid=nrow ( s ) / 5 ;
nidh=nrow (h ) / 5 ;
a=1: nid ;
b=J ( 5 , 1 , 1 ) ;
c=b@(a ‘ ) ;
a1=1: nidh ;
b1=J ( 5 , 1 , 1 ) ;
c1=b1@( a1 ‘ ) ;
c r e a t e s1 from c ;
append from c ;
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c r e a t e s2 from c1 ;
append from c1 ;

qu i t ;
proc s o r t data=s1 ;

by co l 1 ;
run ;
proc s o r t data=s2 ;

by co l 1 ;
run ;
proc iml ;

use s co r e ;
read a l l i n to s co r ;
use hess ;
read a l l i n to hes ;
use s1 ;
read a l l i n to j1 ;
use s2 ;
read a l l i n to j2 ;
s co r1=j1 | | s co r ;
hes1=j2 | | hes ;
I1=J ( 5 , 5 , 0 ) ;
do i=1 to 230 ;

f r e e g ;
do b=1 to (230∗5 ) ;

i f s co r1 [ b ,1 ]= i then do ;
m=scor1 [ b , 2 ] ;
g=g//m;

end ;
end ;
sg=g∗g ‘ ;
I1=I1+sg ;

end ;
I0=J ( 5 , 5 , 0 ) ;
do i=1 to 226 ;

f r e e g1 ;
do b=1 to (226∗5 ) ;

i f hes1 [ b ,1 ]= i then do ;
m=hes1 [ b , 2 ] | | hes1 [ b , 3 ]

| | hes1 [ b , 4 ] | | hes1 [ b , 5 ] | | hes1 [ b , 6 ] ;
g1=g1//m;

end ;
end ;

I0=I0+g1 ;
end ;
vmatn=inv ( I0 ) ;
n a i v s e=s q r t ( vecd iag (vmatn ) ) ;
vmat=inv ( I0 )∗ I1 ∗ inv ( I0 ) ;
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emp se=s q r t ( vecd iag (vmat ) ) ;
se=n a i v s e | | emp se ;
p r i n t se ;

qu i t ;
%mend ;
%se5 ;

/∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗
Weibull model with gamma f r a i l t y and random Ef f e c t s ,
i n c o r p o r a t i n g censor ing , f i t t i n g model that has four parameters
in i t , lambda f i x e d .
∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗/
proc nlmixed data=asma2 tech=quanew qpo int s=50 maxit =1000;

bounds alpha > 0 ;
parms Beta 0=−3.8 Beta 1=−0.1 alpha =4.5 sigma =0.2;
rho =1;
lambda=1;
eta = Beta 0 + Beta 1 ∗( Drug=1) + b1 ;
expeta = exp ( eta ) ;
c0 = 1/((1 + lambda∗ expeta ∗(Time∗∗ rho )∗ (1/ alpha ))∗∗ alpha ) ;
c1 = log ( lambda ) + log ( rho ) + ( alpha +1)∗ l og ( alpha )

+ ( rho−1)∗ l og (Time) + eta
− ( alpha +1)∗ l og ( lambda ∗(Time∗∗ rho )∗ expeta + alpha ) ;

l l = ( s t a t u s =0)∗ l og ( c0 ) + ( s t a tu s =1)∗c1 ;
model Time ˜ gene ra l ( l l ) ;
random b1 ˜ normal (0 , sigma ∗∗2) sub j e c t=Pairnum ;
ods output parameteres t imates=i n i t i a l 2 ;

run ;

data i n i t i a l 2 ;
s e t i n i t i a l 2 ;
keep es t imate ;

run ;

proc iml ;
use i n i t i a l 2 ;
read a l l i n to r ;
b0=r [ 1 , 1 ] ;
b1=r [ 2 , 1 ] ;
b2=r [ 3 , 1 ] ;
b3=r [ 4 , 1 ] ;
c a l l symput ( ’ esa0 ’ , l e f t ( char ( b0 ) ) ) ;
c a l l symput ( ’ esa1 ’ , l e f t ( char ( b1 ) ) ) ;
c a l l symput ( ’ esa2 ’ , l e f t ( char ( b2 ) ) ) ;
c a l l symput ( ’ esa3 ’ , l e f t ( char ( b3 ) ) ) ;

qu i t ;
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proc s o r t data=asma3 ;
by pat id ;

run ;

%macro se4 ;
%do i=1 %to 230 ;

data asm&i ;
s e t asma3 ;
where pat id=&i ;

run ;
proc s o r t data=asm&i ;

by p a i r s u b j ;
run ;
proc nlmixed data=asm&i tech=quanew qpo int s=50

maxit=1000 s t a r t hess ;
bounds alpha > 0 ;
parms Beta 0=&esa0 Beta 1=&esa1

alpha=&esa2 sigma=&esa3 ;
rho =1;
lambda=1;
eta = Beta 0 + Beta 1 ∗( Drug=1) + b1 ;
expeta = exp ( eta ) ;
l l = log ( lambda ) + log ( rho )

+ ( alpha +1)∗ l og ( alpha )
+ ( rho−1)∗ l og (Time) + eta
− ( alpha +1)∗ l og ( lambda ∗(Time∗∗ rho )
∗ expeta + alpha ) ;

model Time ˜ gene ra l ( l l ) ;
random b1 ˜ normal (0 , sigma ∗∗2)

sub j e c t=p a i r s u b j ;
ods output s t a r t i n g v a l u e s=grad

s t a r t i n g h e s s i a n=hes&i ;
run ;
data grad&i ;

s e t grad ;
keep grad i en t ;

run ;
%end ;
data s co r e ;

s e t n u l l ;
run ;
data hess ;

s e t n u l l ;
run ;
%do i=1 %to 230 ;

data s co r e ;
s e t s co r e grad&i ;
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run ;
data hess ;

s e t hess hes&i ;
run ;

%end ;
data hess ;

s e t hess ;
drop row parameter ;

run ;
proc iml ;

use s co r e ;
read a l l i n to s ;
use hess ;
read a l l i n to h ;
nid=nrow ( s ) / 4 ;
nidh=nrow (h ) / 4 ;
a=1: nid ;
b=J ( 4 , 1 , 1 ) ;
c=b@(a ‘ ) ;
a1=1: nidh ;
b1=J ( 4 , 1 , 1 ) ;
c1=b1@( a1 ‘ ) ;
c r e a t e s1 from c ;
append from c ;
c r e a t e s2 from c1 ;
append from c1 ;

qu i t ;
proc s o r t data=s1 ;

by co l 1 ;
run ;
proc s o r t data=s2 ;

by co l 1 ;
run ;
proc iml ;

use s co r e ;
read a l l i n to s co r ;
use hess ;
read a l l i n to hes ;
use s1 ;
read a l l i n to j1 ;
use s2 ;
read a l l i n to j2 ;
s co r1=j1 | | s co r ;
hes1=j2 | | hes ;
I1=J ( 4 , 4 , 0 ) ;
do i=1 to 230 ;
f r e e g ;
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do b=1 to (230∗4 ) ;
i f s co r1 [ b ,1 ]= i then do ;

m=scor1 [ b , 2 ] ;
g=g//m;

end ;
end ;
sg=g∗g ‘ ;
I1=I1+sg ;

end ;
I0=J ( 4 , 4 , 0 ) ;
do i=1 to 226 ;
f r e e g1 ;

do b=1 to (226∗4 ) ;
i f hes1 [ b ,1 ]= i then do ;

m=hes1 [ b , 2 ] | | hes1 [ b , 3 ]
| | hes1 [ b , 4 ] | | hes1 [ b , 5 ] ;

g1=g1//m;
end ;

end ;
I0=I0+g1 ;

end ;
vmatn=inv ( I0 ) ;
n a i v s e=s q r t ( vecd iag (vmatn ) ) ;
vmat=inv ( I0 )∗ I1 ∗ inv ( I0 ) ;
emp se=s q r t ( vecd iag (vmat ) ) ;
se=n a i v s e | | emp se ;
p r i n t se ;

qu i t ;
%mend ;
%se4 ;

/∗ S p e c i a l case : Combined model without censo r ing and s e t t i n g
lambda=1 ∗/

proc nlmixed data=asthma tech=quanew qpo int s=50 maxit =1000;
bounds alpha > 0 ;
parms Beta 0=−3 Beta 1=−0.2 alpha =3.3 sigma =1;
rho =1;
lambda = 1 ;
eta = Beta 0 + Beta 1 ∗( Drug=1) + b1 ;
expeta = exp ( eta ) ;
l l = log ( lambda ) + log ( rho ) + ( alpha +1)∗ l og ( alpha )

+ ( rho−1)∗ l og (Time) + eta
− ( alpha +1)∗ l og ( lambda ∗(Time∗∗ rho )∗ expeta + alpha ) ;

model Time ˜ gene ra l ( l l ) ;
random b1 ˜ normal (0 , sigma ∗∗2) sub j e c t=Patid ;

run ;
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/∗ S p e c i a l case : Combined model with censo r ing and s e t t i n g
lambda=1 ∗/

proc nlmixed data=asthma tech=quanew qpo int s=50 maxit =1000;
bounds alpha > 0 ;
parms Beta 0=−3 Beta 1=−0.11 alpha =3.3 sigma =1;
rho =1;
lambda = 1 ;
eta = Beta 0 + Beta 1 ∗( Drug=1) + b1 ;
expeta = exp ( eta ) ;
c0 = 1/((1 + lambda∗ expeta ∗(Time∗∗ rho )∗ (1/ alpha ))∗∗ alpha ) ;
c1 = log ( lambda ) + log ( rho ) + ( alpha +1)∗ l og ( alpha )

+ ( rho−1)∗ l og (Time) + eta
− ( alpha +1)∗ l og ( lambda ∗(Time∗∗ rho )∗ expeta + alpha ) ;

l l = ( s t a t u s =0)∗ l og ( c0 ) + ( s t a tu s =1)∗c1 ;
model Time ˜ gene ra l ( l l ) ;
random b1 ˜ normal (0 , sigma ∗∗2) sub j e c t=Patid ;

run ;

G.2.2 The Combined Model and its Marginalized Version

/∗ H i e r a r c h i c a l Exponential−Gamma−Normal with censo r ing ∗/
proc nlmixed data=asthma tech=quanew qpo int s=50 maxit =1000;

bounds lambda>0, alpha >0;
parms Beta1=−0.08 lambda=1 alpha =3.3 sigma1=1 sigma2 =1;
rho =1;
eta=(Beta1+b2 )∗ ( Drug=1)+b1 ;
expeta=exp ( eta ) ;
c0=1/((1+lambda∗ expeta ∗(Time∗∗ rho )∗ (1/ alpha ))∗∗ alpha ) ;
c1=log ( lambda)+ log ( rho )+( alpha +1)∗ l og ( alpha )

+ ( rho−1)∗ l og (Time) +eta
− ( alpha +1)∗ l og ( lambda ∗(Time∗∗ rho )∗ expeta+alpha ) ;

l l =( s t a t u s =0)∗ l og ( c0 )+( s t a tu s =1)∗c1 ;
model Time˜ gene ra l ( l l ) ;
random b1 b2 ˜normal ( [ 0 , 0 ] , [ sigma1 ∗∗2 ,0 , sigma2 ∗∗2 ] )

sub j e c t=Patid ;
e s t imate ”Var o f R. E1 . s ” sigma1 ∗∗2 ;
e s t imate ”Var o f R. E2 . s ” sigma2 ∗∗2 ;

run ;

/∗ Margina l i zed Exponential−Gamma−Normal with censo r ing ∗/
proc nlmixed data=asthma tech=quanew qpo int s=50 maxit =1000;

bounds lambda>0, alpha >0;
parms Beta1=−0.08 lambda=1 alpha =3.3 sigma1=1 sigma2 =1;
rho =1;
eta=(Beta1+b2 )∗ ( Drug=1);
d e l t a=eta−(sigma1∗ sigma1+sigma2∗ sigma2 ∗( Drug=1)

∗( Drug =1))/2;
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e ta s=de l t a+b1 ;
expeta=exp ( e ta s ) ;
c0=1/((1+lambda∗ expeta ∗(Time∗∗ rho )∗ (1/ alpha ))∗∗ alpha ) ;
c1=log ( lambda)+ log ( rho )

+(alpha +1)∗ l og ( alpha )+(rho−1)∗ l og (Time) +eta
− ( alpha +1)∗ l og ( lambda ∗(Time∗∗ rho )∗ expeta+alpha ) ;

l l =( s t a t u s =0)∗ l og ( c0 )+( s t a tu s =1)∗c1 ;
model Time˜ gene ra l ( l l ) ;
random b1 b2 ˜normal ( [ 0 , 0 ] , [ sigma1 ∗∗2 ,0 , sigma2 ∗∗2 ] )

sub j e c t=Patid ;
e s t imate ”Var o f R. E1 . s ” sigma1 ∗∗2 ;
e s t imate ”Var o f R. E2 . s ” sigma2 ∗∗2 ;

run ;

G.2.3 Gradient Function for Assessing Fit of Random-Effects
Distribution

/∗ Plot EB es t imate s normal random e f f e c t s ∗/
proc s g p l o t data=EB out ;

histogram Estimate ;
dens i ty Estimate ;
dens i ty Estimate / type=ke rne l ;

run ;

/∗ Plot EB es t imate s gamma random e f f e c t s ∗/
/∗ I n t e g r a t i o n over t h e t a i j ( Idd i e t al , 2014)∗/
proc iml ;

use work . asthma ;
read a l l i n to data ;
M = nrow ( data ) ;

s t a r t fxn1 ( theta ) g l o b a l ( alpha , lambda , rho , subdata , i ,
j , b0 , b i ) ;

Drug = subdata [ , 5 ] ;
Time = subdata [ , 7 ] ;
term1 = b0 [ 1 ] + b0 [2]# Drug [ j ] + bi [ i ] ;
kappa = theta#exp ( term1 ) ;
fy = lambda#rho#kappa#Time [ j ]##(rho−1)

#exp(−lambda#Time [ j ]##rho#kappa ) ;
term = (1/ alpha)##alpha#exp ( lgamma( alpha ) ) ;
f t h e t a = (1/ term)#theta##(alpha−1)

#exp(− theta /(1/ alpha ) ) ;
i n t = fy#f t h e t a ;

r e turn ( i n t ) ;
f i n i s h ;

s t a r t fxn2 ( theta ) g l o b a l ( alpha , lambda , rho , subdata , i ,
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j , b0 , b i ) ;
num = fxn1 ( theta ) ;
eps = 1E−10;
l im2 = {0 .P} ;
c a l l quad ( den , ” fxn1 ” , l im2 ) eps=eps s c a l e=1

c y c l e s=8 msg=”no ” ;
obj = ( theta#num)/ den ;

re turn ( obj ) ;
f i n i s h ;

s t a r t fxn3 ( theta ) g l o b a l ( alpha , lambda , rho , subdata , i ,
j , b0 , bi , x r e s ) ;

num = fxn1 ( theta ) ;
eps = 1E−10;
l im2 = {0 .P} ;
c a l l quad ( den , ” fxn1 ” , l im2 ) eps=eps s c a l e=1

c y c l e s=8 msg=”no ” ;
obj = ( ( theta−xre s)##2)#num/den ;

re turn ( obj ) ;
f i n i s h ;

/∗ I n t i a l s ∗/
N = 232 ;
use EB out ;
read a l l i n to b i ;
b i = bi [ , 3 ] ;
ebtheta = repeat ( . , M) ;
ebstd = repeat ( . , M) ;
b0 = {−4.0195 −0.1115 3 .5633 0 .3158 0 .7882 1} ;
p = 0 ;
alpha = b0 [ 3 ] ;
d = b0 [ 4 ] ;
lambda = b0 [ 5 ] ;
rho = b0 [ 6 ] ;
do i = 1 to N;

index1=t ( l o c ( data [ , 1]= i ) ) ;
subdata = data [ index1 , ] ;
n i = nrow ( subdata ) ;

do j = 1 to n i ;
p = p+1;
eps = 1E−10;
l im = {0 .P} ;
c a l l quad ( xres , ” fxn2 ” , l im )

eps=eps s c a l e=1 c y c l e s=8
msg=”no ” ;

c a l l quad ( std , ” fxn3 ” , l im )
eps=eps s c a l e=1 c y c l e s=8
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msg=”no ” ;
ebtheta [ p ] = xre s ;
ebstd [ p ] = s q r t ( std ) ;
∗end ;

end ;
end ;
c r e a t e ebtheta from ebtheta ;
append from ebtheta ;
out = ebtheta | | ebstd ;
c r e a t e work . mythetacmwei from out [ colname={ ’ e st ’ ’ std ’ } ] ;
append from out ;

qu i t ;

/∗ Pred i c t i on ∗/
data a l l e p i ;

merge work . asthma EB out ;
by Patid ;

run ;
data a l l e p i ;

merge a l l e p i work . mythetacmwei ;
run ;

data work . AllResultWei ;
s e t a l l e p i ;
predkappa = e s t ∗exp (−4.1993 − 0 .0887∗ ( Drug=1) + est imate ) ;
keep Patid Drug Time est imate StdErrPred e s t std

predkappa ;
run ;

proc s q l ;
c r e a t e t ab l e work . theta as

s e l e c t d i s t i n c t Patid as Patid , AVG( e s t )
as Empir ica l Bayes Est imate

from work . a l l r e s u l t w e i
group by Patid
order by Patid ;

run ;

proc s g p l o t data=theta ;
histogram Empi r i ca l Bayes e s t imate ;
dens i ty Empi r i ca l Bayes e s t imate / type=ke rne l ;

run ;

/∗ Cal cu la t i on o f log−l i k e l i h o o d va lue s f o r f i t t e d model , f o r
each pa t i en t s e p a r a t e l y ∗/

proc nlmixed data=asthma tech=quanew qpo int s=50 maxit =1000;
bounds lambda > 0 , alpha > 0 ;
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parms Beta 0=−3 Beta 1=−0.11 lambda = 1 alpha =3.3
sigma =1;

rho =1;
eta = Beta 0 + Beta 1 ∗( Drug=1) + b1 ;
expeta = exp ( eta ) ;
c0 = 1/((1 + lambda∗ expeta ∗(Time∗∗ rho )∗ (1/ alpha ) )

∗∗ alpha ) ;
c1 = log ( lambda ) + log ( rho ) + ( alpha +1)∗ l og ( alpha )

+ ( rho−1)∗ l og (Time) + eta
− ( alpha +1)∗ l og ( lambda ∗(Time∗∗ rho )∗ expeta + alpha ) ;

l l = ( s t a t u s =0)∗ l og ( c0 ) + ( s t a tu s =1)∗c1 ;
model Time ˜ gene ra l ( l l ) ;
random b1 ˜ normal (0 , sigma ∗∗2) sub j e c t=Patid ;
by Patid ;
ods output parameters=out ;

run ;

data outmodel ;
s e t out ;
l lmode l=−n e g l o g l i k e ;
keep Patid l lmode l ;

run ;

/∗ Cal cu la t i on o f log−l i k e l i h o o d f o r g r id o f random−e f f e c t
values , f o r each sub j e c t s e p a r a t e l y ∗/

proc nlmixed data=asthma tech=quanew qpo int s=50 maxit =1000;
bounds lambda > 0 , alpha > 0 ;
parms Beta 0=−3 Beta 1=−0.11 lambda = 1 alpha =3.3

sigma=1 b1=−5 to 5 by 0 . 1 ;
rho =1;
eta = Beta 0 + Beta 1 ∗( Drug=1) + b1 ;
expeta = exp ( eta ) ;
c0 = 1/((1 + lambda∗ expeta ∗(Time∗∗ rho )∗ (1/ alpha ) )

∗∗ alpha ) ;
c1 = log ( lambda ) + log ( rho ) + ( alpha +1)∗ l og ( alpha )

+ ( rho−1)∗ l og (Time) + eta
− ( alpha +1)∗ l og ( lambda ∗(Time∗∗ rho )∗ expeta + alpha ) ;

l l = ( s t a t u s =0)∗ l og ( c0 ) + ( s t a tu s =1)∗c1 ;
model Time ˜ gene ra l ( l l ) ;
by Patid ;
ods output parameters=out1 ;

run ;

data outgr id ;
s e t out1 ;
l l g r i d=−n e g l o g l i k e ;
keep Patid b1 l l g r i d ;
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run ;

/∗ Data management and c a l c u l a t i o n o f g rad i en t func t i on
and po intw i s e con f idence bands∗/
data o u t t o t a l ;

merge outgr id outmodel ;
by Patid ;

run ;

data o u t t o t a l ;
s e t o u t t o t a l ;
r a t i o=exp ( l l g r i d−l lmode l ) ;
keep Patid b1 r a t i o ;

run ;

proc s o r t data=o u t t o t a l ;
by b1 ;

run ;

proc means data=o u t t o t a l alpha =0.05 mean var clm ;
var r a t i o ;
by b1 ;
ods output summary=summary ;

run ;

data g rad i en t ;
s e t summary ;
y=ratio Mean ;
symbol=”Gradient func t i on ” ;
keep b1 y symbol ;
data lower ;

s e t summary ;
y=ratio LCLM ;
symbol=”95% CI − Lower ” ;
keep b1 y symbol ;

data upper ;
s e t summary ;
y=ratio UCLM ;
symbol=”95% CI − Upper ” ;
keep b1 y symbol ;

data f i g u r e ;
s e t g rad i en t lower upper ;

run ;
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G.2.4 Local Influence Analysis

/∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗
Local I n f l u e n c e f o r Exponential−Normal Model
∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗/

data a s t h m a f o r l o c a l ;
s e t asthma ;
count + 1 ;
by Patid ;
i f f i r s t . Patid then count = 1 ;

run ;

data a s t h m a f o r l o c a l ;
s e t a s t h m a f o r l o c a l ;
i n t =1;
p lacebo = ( Drug=0);
treatment = ( Drug=1);
ptime = placebo ∗ count ;
tt ime = treatment ∗ count ;

run ;

proc f r e q data=a s t h m a f o r l o c a l nopr int ;
t a b l e s Patid /out=n f r e c ;

run ;

proc s o r t data=a s t h m a f o r l o c a l ;
by Patid ;

run ;

/∗ Exponential−normal model with censo r ing ∗/
∗use nlmixed the same s l ope he s s i an matrix f o r o v e r a l l s ub j e c t ;
proc nlmixed data=a s t h m a f o r l o c a l tech=quanew qpo int s=50

maxit=1000 hess s t a r t ;
bounds lambda > 0 ;
parms Beta 0=−3 Beta 1=−0.11 lambda = 1 sigma =1;
rho =1;
eta = Beta 0 + Beta 1 ∗( Drug=1) + b1 ;
expeta = exp ( eta ) ;
c0 = log ( rho)−lambda ∗(Time∗∗ rho )∗ expeta ;
c1 = log ( lambda ) + log ( rho ) + ( rho−1)∗ l og (Time) + eta

− lambda ∗(Time∗∗ rho )∗ expeta ;
l l = ( s t a t u s =0)∗c0 + ( s t a t u s =1)∗c1 ;
model Time ˜ gene ra l ( l l ) ;
random b1 ˜ normal (0 , sigma ∗∗2) sub j e c t=Patid ;
p r e d i c t b1 out=bi ;
p r e d i c t gamma(1+(1/ rho ) ) / ( exp ( eta )∗∗ (1/ rho ) ) out=yhat ;
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ods output ParameterEstimates = f i x e d s o l ;
ods output he s s i an=hes s i an ;

run ;

proc s o r t data=a s t h m a f o r l o c a l ;
by Patid ;

run ;

proc nlmixed data=a s t h m a f o r l o c a l tech=quanew qpo int s=50
maxit=1000 hess s t a r t ;

bounds lambda > 0 ;
parms / data=f i x e d s o l ;
rho =1;
eta = Beta 0 + Beta 1 ∗( Drug=1) + b1 ;
expeta = exp ( eta ) ;
c0 = log ( rho)−lambda ∗(Time∗∗ rho )∗ expeta ;
c1 = log ( lambda ) + log ( rho ) + ( rho−1)∗ l og (Time)

+ eta − lambda ∗(Time∗∗ rho )∗ expeta ;
l l = ( s t a t u s =0)∗c0 + ( s t a t u s =1)∗c1 ;
model Time ˜ gene ra l ( l l ) ;
random b1 ˜ normal (0 , sigma ∗∗2) sub j e c t=Patid ;
by Patid ;
ods output ParameterEstimates = g r a d i e n t i d ;
ods output he s s i an=h e s s i a a n i d ;

run ;

data yhat ;
s e t yhat ;
keep Patid pred ;

run ;

proc iml ;
r e s e t p r i n t ;

use a s t h m a f o r l o c a l ;
l a b e l x = {placebo ptime treatment tt ime } ;
l a b e l z = { i n t } ;
l a b e l y = {Time } ;
read a l l var l a b e l x in to f i x e d ;
read a l l var l a b e l z i n to random ;
read a l l var l a b e l y in to resp ;

p=nco l ( f i x e d ) ;
q=nco l ( random ) ;
a=1;

use yhat ;
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read a l l i n to yhat ;
yhat= yhat [ , 2 ] ;

c r e a t e yhat program 1 from yhat ;
append from yhat ;

use f i x e d s o l ;
read a l l i n to f i x e d s o l ;
f i x edpa r= f i x e d s o l [ , 1 ] ;

c r e a t e f i x ed so l p rog ram 1 from f i x edpa r ;
append from f i x edpa r ;

use he s s i an ;
read a l l i n to L ;
n L = nrow (L) ;/∗4∗/

L= L[ ,2 :1+ nrow (L ) ] ;
L inv=inv (L ) ;

Lb= L [ 1 : nrow (L)−q−a , 1 : nrow (L)−q−a ] ;
Lb inv=inv (Lb ) ;

Ll= L [ p−1:nrow (L)−a , p−1:nrow (L)−a ] ;
L l i nv=inv ( Ll ) ;

Ld= L [ p : nrow (L)−a+1,p : nrow (L)−a +1] ;
Ld inv=inv (Ld ) ;

c r e a t e L 1 from L ;
append from L ;

c r e a t e Lb 1 from Lb ;
append from Lb ;

c r e a t e L l 1 from Ll ;
append from Ll ;

c r e a t e Ld 1 from Ld ;
append from Ld ;

use g r a d i e n t i d ;
read a l l i n to Delta ;
d e l t a i= de l t a [ , 2 ] ;

c r e a t e De l ta 1 from d e l t a i ;
append from d e l t a i ;
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use n f r e c ;
read a l l i n to n f r e c ;
id = n f r e c [ , 1 ] ;
n id=nrow ( n f r e c ) ;

c r e a t e n f rec program 1 from id ;
append from id ;

begin = 1 ;
beg in b = 1 ;
b e g i n l = p−1;
beg in d = p+q−1;

do s=1 to n id ;
end = begin+p+q−2;
end b = beg in b+p−3;
end l = b e g i n l ;
end d = beg in d ;

Ci = 2#d e l t a i [ begin : end , ] ‘∗ L inv
∗ d e l t a i [ begin : end , ] ;

Ci b = 2#d e l t a i [ beg in b : end b , ] ‘∗ Lb inv
∗ d e l t a i [ beg in b : end b , ] ;

C i l = 2#d e l t a i [ b e g i n l : end l , ] ‘∗ L l i nv
∗ d e l t a i [ b e g i n l : end l , ] ;

Ci d = 2#d e l t a i [ beg in d : end d , ] ‘∗ Ld inv
∗ d e l t a i [ beg in d : end d , ] ;

begin=end+1;
beg in b=end b+q+2;
b e g i n l=end l+p ;
beg in d=end l+p ;

C i = C i //Ci ;
Cib = Cib// Ci b ;
C i l = Ci l // C i l ;
Cid = Cid// Ci d ;

index=index // s ;
end ;

begin = 1 ;

do s=1 to n id ;
n i = n f r e c [ s , 2 ] ;
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end=begin+ni −1;

f i x e d i = f i x e d [ begin : end , ] ;
randomi = random [ begin : end , ] ;
r e s p i = resp [ begin : end ] ;
yhat i = yhat [ begin : end ] ;
r e s i d i = re sp i−yhat i ;

begin = end +1;

r r i = s q r t ( t r a c e ( r e s i d i ∗ r e s i d i ‘ ) ) ;
xx i = s q r t ( t r a c e ( f i x e d i ∗ f i x e d i ‘ ) ) ;

probnorm rr i = probnorm rr i // r r i ;
probnorm xxi = probnorm xxi // xxi ;

end ;

out=index | | C i | | Cib | | Ci l | | Cid | | probnorm rr i | | probnorm xxi ;
varnames = { ’ index ’ ’ C i ’ ’ Ci b ’ ’ C i l ’ ’ Ci d ’

’ | | r r i | | ’ ’ | | xxi | | ’ } ;

c r e a t e outdata 1 from out [ colname= varnames ] ;
append from out ;

c l o s e f i x e d s o l ;
c l o s e he s s i an ;
c l o s e n f r e c ;
c l o s e a s t h m a f o r l o c a l ;
c l o s e g r a d i e n t i d ;

qu i t ;

/∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗
Local I n f l u e n c e f o r Exponential−Gamma−Normal Model
∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗/

data a s t h m a f o r l o c a l ;
s e t asthma ;
count + 1 ;
by Patid ;
i f f i r s t . Patid then count = 1 ;

run ;

data a s t h m a f o r l o c a l ;
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s e t a s t h m a f o r l o c a l ;
i n t =1;
p lacebo = ( Drug=0);
treatment = ( Drug=1);
ptime = placebo ∗ count ;
tt ime = treatment ∗ count ;

run ;

proc f r e q data=a s t h m a f o r l o c a l nopr int ;
t a b l e s Patid /out=n f r e c ;

run ;

proc s o r t data=a s t h m a f o r l o c a l ;
by Patid ;

run ;

/∗ Combined model with censo r ing ∗/
proc nlmixed data=a s t h m a f o r l o c a l tech=quanew qpo int s=50

maxit=1000 hess s t a r t ;
bounds lambda > 0 , alpha > 0 ;
parms Beta 0=−3 Beta 1=−0.11 lambda = 1 alpha =3.3

sigma =1;
rho =1;
eta = Beta 0 + Beta 1 ∗( Drug=1) + b1 ;
expeta = exp ( eta ) ;
c0 = 1/((1 + lambda∗ expeta ∗(Time∗∗ rho )∗ (1/ alpha ) )

∗∗ alpha ) ;
c1 = log ( lambda ) + log ( rho ) + ( alpha +1)∗ l og ( alpha )

+ ( rho−1)∗ l og (Time) + eta
− ( alpha +1)∗ l og ( lambda ∗(Time∗∗ rho )∗ expeta + alpha ) ;

l l = ( s t a t u s =0)∗ l og ( c0 ) + ( s t a tu s =1)∗c1 ;
model Time ˜ gene ra l ( l l ) ;
random b1 ˜ normal (0 , sigma ∗∗2) sub j e c t=Patid ;
p r e d i c t b1 out=bi ;
p r e d i c t (gamma( alpha−(1/ rho ) )∗gamma(1+(1/ rho ) ) )

/(gamma( alpha )∗ ( ( exp ( eta )/ alpha )∗∗ (1/ rho ) ) )
out=yhat ;

ods output ParameterEstimates = f i x e d s o l ;
ods output he s s i an=hes s i an ;

run ;

proc s o r t data=a s t h m a f o r l o c a l ;
by Patid ;

run ;

proc nlmixed data=a s t h m a f o r l o c a l tech=quanew qpo int s=50
maxit=1000 hess s t a r t ;
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bounds lambda > 0 , alpha > 0 ;
parms / data=f i x e d s o l ;
rho =1;
eta = Beta 0 + Beta 1 ∗( Drug=1) + b1 ;
expeta = exp ( eta ) ;
c0 = 1/((1 + lambda∗ expeta ∗(Time∗∗ rho )∗ (1/ alpha ) )

∗∗ alpha ) ;
c1 = log ( lambda ) + log ( rho ) + ( alpha +1)∗ l og ( alpha )

+ ( rho−1)∗ l og (Time) + eta
− ( alpha +1)∗ l og ( lambda ∗(Time∗∗ rho )∗ expeta + alpha ) ;

l l = ( s t a t u s =0)∗ l og ( c0 ) + ( s t a tu s =1)∗c1 ;
model Time ˜ gene ra l ( l l ) ;
random b1 ˜ normal (0 , sigma ∗∗2) sub j e c t=Patid ;
by Patid ;
ods output ParameterEstimates = g r a d i e n t i d ;
ods output he s s i an=h e s s i a a n i d ;

run ;

data yhat ;
s e t yhat ;
keep Patid pred ;

run ;

proc iml ;
r e s e t p r i n t ;

use a s t h m a f o r l o c a l ;
l a b e l x = {placebo ptime treatment tt ime } ;
l a b e l z = { i n t } ;
l a b e l y = {Time } ;
read a l l var l a b e l x in to f i x e d ;
read a l l var l a b e l z i n to random ;
read a l l var l a b e l y in to resp ;

p=nco l ( f i x e d ) ;
q=nco l ( random ) ;
a=1;

use yhat ;
read a l l i n to yhat ;
yhat= yhat [ , 2 ] ;

c r e a t e yhat program 1 from yhat ;
append from yhat ;

use f i x e d s o l ;
read a l l i n to f i x e d s o l ;
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f i x edpa r= f i x e d s o l [ , 1 ] ;

c r e a t e f i x ed so l p rog ram 1 from f i x edpa r ;
append from f i x edpa r ;

use he s s i an ;
read a l l i n to L ;
n L = nrow (L ) ;

L= L[ ,2 :1+ nrow (L ) ] ;
L inv=inv (L ) ;

Lb= L [ 1 : nrow (L)−q−a−1 ,1: nrow (L)−q−a−1] ;
Lb inv=inv (Lb ) ;

Ll= L [ p−1:nrow (L)−a−1,p−1:nrow (L)−a−1] ;
L l i nv=inv ( Ll ) ;

La= L [ p : nrow (L)−a , p : nrow (L)−a ] ;
La inv=inv (La ) ;

Ld= L [ p+q : nrow (L) , p+q : nrow (L ) ] ;
Ld inv=inv (Ld ) ;

c r e a t e L 1 from L ;
append from L ;

c r e a t e Lb 1 from Lb ;
append from Lb ;

c r e a t e L l 1 from Ll ;
append from Ll ;

c r e a t e La 1 from La ;
append from La ;

c r e a t e Ld 1 from Ld ;
append from Ld ;

use g r a d i e n t i d ;
read a l l i n to Delta ;
d e l t a i= de l t a [ , 2 ] ;

c r e a t e De l ta 1 from d e l t a i ;
append from d e l t a i ;

use n f r e c ;

174



read a l l i n to n f r e c ;
id = n f r e c [ , 1 ] ;
n id=nrow ( n f r e c ) ;

c r e a t e n f rec program 1 from id ;
append from id ;

begin = 1 ;
beg in b = 1 ;
b e g i n l=p−1;
beg in a = p ;
beg in d = p+q ;

do s=1 to n id ;
end=begin+p+q+a−2;
end b=beg in b +1;
end l=b e g i n l ;
end a=beg in a ;
end d=beg in d ;

Ci = 2#d e l t a i [ begin : end , ] ‘∗ L inv
∗ d e l t a i [ begin : end , ] ;

Ci b = 2#d e l t a i [ beg in b : end b , ] ‘∗ Lb inv
∗ d e l t a i [ beg in b : end b , ] ;

C i l = 2#d e l t a i [ b e g i n l : end l , ] ‘∗ L l i nv
∗ d e l t a i [ b e g i n l : end l , ] ;

Ci a = 2#d e l t a i [ beg in a : end a , ] ‘∗ La inv
∗ d e l t a i [ beg in a : end a , ] ;

Ci d = 2#d e l t a i [ beg in d : end d , ] ‘∗ Ld inv
∗ d e l t a i [ beg in d : end d , ] ;

begin=end+1;
beg in b=end b+q+a+2;
b e g i n l=end l+a+p ;
beg in a=end a+p+1;
beg in d=end d+p+q ;

C i = C i //Ci ;
Cib = Cib// Ci b ;
C i l = Ci l // C i l ;
Cia = Cia // Ci a ;
Cid = Cid// Ci d ;

index=index // s ;
end ;

begin = 1 ;
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do s=1 to n id ;
n i = n f r e c [ s , 2 ] ;

end=begin+ni −1;

f i x e d i = f i x e d [ begin : end , ] ;
randomi = random [ begin : end , ] ;
r e s p i = resp [ begin : end ] ;
yhat i = yhat [ begin : end ] ;
r e s i d i = re sp i−yhat i ;

begin = end +1;

r r i = s q r t ( t r a c e ( r e s i d i ∗ r e s i d i ‘ ) ) ;
xx i = s q r t ( t r a c e ( f i x e d i ∗ f i x e d i ‘ ) ) ;

probnorm rr i = probnorm rr i // r r i ;
probnorm xxi = probnorm xxi // xxi ;

end ;

out=index | | C i | | Cib | | Ci l | | Cia | | Cid | | probnorm rr i
| | probnorm xxi ;

varnames = { ’ index ’ ’ C i ’ ’ Ci b ’ ’ C i l ’ ’ Ci a ’ ’ Ci d ’
’ | | r r i | | ’ ’ | | xxi | | ’ } ;

c r e a t e outdata 1 from out [ colname= varnames ] ;
append from out ;

c l o s e f i x e d s o l ;
c l o s e he s s i an ;
c l o s e n f r e c ;
c l o s e a s t h m a f o r l o c a l ;
c l o s e g r a d i e n t i d ;

qu i t ;
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